[INFO] updating cached repository helloooooo/learn_deep_learning [INFO] running `"git" "fetch" "--all"` [INFO] [stdout] Fetching origin [INFO] [stderr] From git://github.com/helloooooo/learn_deep_learning [INFO] [stderr] * branch HEAD -> FETCH_HEAD [INFO] running `"git" "clone" "work/cache/sources/gh/helloooooo/learn_deep_learning" "work/ex/pr-56896/sources/master#adbfec229ce07ff4b2a7bf2d6dec2d13cb224980/gh/helloooooo/learn_deep_learning"` [INFO] [stderr] Cloning into 'work/ex/pr-56896/sources/master#adbfec229ce07ff4b2a7bf2d6dec2d13cb224980/gh/helloooooo/learn_deep_learning'... [INFO] [stderr] done. [INFO] running `"git" "clone" "work/cache/sources/gh/helloooooo/learn_deep_learning" "work/ex/pr-56896/sources/try#bad365140e1e8233b42b21af70a407f14ce5fec5/gh/helloooooo/learn_deep_learning"` [INFO] [stderr] Cloning into 'work/ex/pr-56896/sources/try#bad365140e1e8233b42b21af70a407f14ce5fec5/gh/helloooooo/learn_deep_learning'... [INFO] [stderr] done. [INFO] running `"git" "rev-parse" "HEAD"` [INFO] [stdout] 094ea00d204262e73fdb1684d499ebf38ea65d5e [INFO] sha for GitHub repo helloooooo/learn_deep_learning: 094ea00d204262e73fdb1684d499ebf38ea65d5e [INFO] validating manifest of helloooooo/learn_deep_learning on toolchain master#adbfec229ce07ff4b2a7bf2d6dec2d13cb224980 [INFO] running `"/mnt/big/crater/work/local/cargo-home/bin/cargo" "+adbfec229ce07ff4b2a7bf2d6dec2d13cb224980-alt" "read-manifest" "--manifest-path" "Cargo.toml"` [INFO] validating manifest of helloooooo/learn_deep_learning on toolchain try#bad365140e1e8233b42b21af70a407f14ce5fec5 [INFO] running `"/mnt/big/crater/work/local/cargo-home/bin/cargo" "+bad365140e1e8233b42b21af70a407f14ce5fec5-alt" "read-manifest" "--manifest-path" "Cargo.toml"` [INFO] started frobbing helloooooo/learn_deep_learning [INFO] finished frobbing helloooooo/learn_deep_learning [INFO] frobbed toml for helloooooo/learn_deep_learning written to work/ex/pr-56896/sources/master#adbfec229ce07ff4b2a7bf2d6dec2d13cb224980/gh/helloooooo/learn_deep_learning/Cargo.toml [INFO] started frobbing helloooooo/learn_deep_learning [INFO] finished frobbing helloooooo/learn_deep_learning [INFO] frobbed toml for helloooooo/learn_deep_learning written to work/ex/pr-56896/sources/try#bad365140e1e8233b42b21af70a407f14ce5fec5/gh/helloooooo/learn_deep_learning/Cargo.toml [INFO] crate helloooooo/learn_deep_learning has a lockfile. skipping [INFO] running `"/mnt/big/crater/work/local/cargo-home/bin/cargo" "+adbfec229ce07ff4b2a7bf2d6dec2d13cb224980-alt" "fetch" "--locked" "--manifest-path" "Cargo.toml"` [INFO] running `"/mnt/big/crater/work/local/cargo-home/bin/cargo" "+bad365140e1e8233b42b21af70a407f14ce5fec5-alt" "fetch" "--locked" "--manifest-path" "Cargo.toml"` [INFO] checking helloooooo/learn_deep_learning against master#adbfec229ce07ff4b2a7bf2d6dec2d13cb224980 for pr-56896 [INFO] running `"docker" "create" "-v" "/mnt/big/crater/work/local/target-dirs/pr-56896/worker-6/master#adbfec229ce07ff4b2a7bf2d6dec2d13cb224980:/opt/crater/target:rw,Z" "-v" "/mnt/big/crater/work/ex/pr-56896/sources/master#adbfec229ce07ff4b2a7bf2d6dec2d13cb224980/gh/helloooooo/learn_deep_learning:/opt/crater/workdir:ro,Z" "-v" "/mnt/big/crater/work/local/cargo-home:/opt/crater/cargo-home:ro,Z" "-v" "/mnt/big/crater/work/local/rustup-home:/opt/crater/rustup-home:ro,Z" "-e" "USER_ID=1000" "-e" "SOURCE_DIR=/opt/crater/workdir" "-e" "MAP_USER_ID=1000" "-e" "CARGO_TARGET_DIR=/opt/crater/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/crater/cargo-home" "-e" "RUSTUP_HOME=/opt/crater/rustup-home" "-w" "/opt/crater/workdir" "-m" "1536M" "--network" "none" "rustops/crates-build-env" "/opt/crater/cargo-home/bin/cargo" "+adbfec229ce07ff4b2a7bf2d6dec2d13cb224980-alt" "check" "--frozen" "--all" "--all-targets"` [INFO] [stdout] 40f8320b4a4e9ba0f71cc3cb63b1bdc14d49d1cd966a8d64cfa395fe17bd0687 [INFO] running `"docker" "start" "-a" "40f8320b4a4e9ba0f71cc3cb63b1bdc14d49d1cd966a8d64cfa395fe17bd0687"` [INFO] [stderr] Checking gnuplot v0.0.23 [INFO] [stderr] Checking mnist v0.4.0 [INFO] [stderr] Checking base64 v0.8.0 [INFO] [stderr] Checking futures-cpupool v0.1.7 [INFO] [stderr] Checking alga v0.5.2 [INFO] [stderr] Checking tokio-proto v0.1.1 [INFO] [stderr] Checking native-tls v0.1.4 [INFO] [stderr] Checking sha-1 v0.4.1 [INFO] [stderr] Checking tokio-tls v0.1.3 [INFO] [stderr] Checking hyper v0.11.9 [INFO] [stderr] Checking nalgebra v0.13.1 [INFO] [stderr] Checking hyper-tls v0.1.2 [INFO] [stderr] Checking egg-mode v0.12.0 [INFO] [stderr] Checking test1 v0.1.0 (/opt/crater/workdir) [INFO] [stderr] warning: unused imports: `RefMut`, `Ref` [INFO] [stderr] --> src/gradient.rs:5:26 [INFO] [stderr] | [INFO] [stderr] 5 | use std::cell::{RefCell, Ref, RefMut}; [INFO] [stderr] | ^^^ ^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: #[warn(unused_imports)] on by default [INFO] [stderr] [INFO] [stderr] warning: unused import: `std::cell::RefCell` [INFO] [stderr] --> src/nural.rs:5:5 [INFO] [stderr] | [INFO] [stderr] 5 | use std::cell::RefCell; [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: unused variable: `rows` [INFO] [stderr] --> src/main.rs:21:16 [INFO] [stderr] | [INFO] [stderr] 21 | let (size, rows, cols) = (60_000, 28, 28); [INFO] [stderr] | ^^^^ help: consider using `_rows` instead [INFO] [stderr] | [INFO] [stderr] = note: #[warn(unused_variables)] on by default [INFO] [stderr] [INFO] [stderr] warning: unused variable: `cols` [INFO] [stderr] --> src/main.rs:21:22 [INFO] [stderr] | [INFO] [stderr] 21 | let (size, rows, cols) = (60_000, 28, 28); [INFO] [stderr] | ^^^^ help: consider using `_cols` instead [INFO] [stderr] [INFO] [stderr] warning: unused variable: `batch_size` [INFO] [stderr] --> src/main.rs:40:9 [INFO] [stderr] | [INFO] [stderr] 40 | let batch_size = 100; [INFO] [stderr] | ^^^^^^^^^^ help: consider using `_batch_size` instead [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/main.rs:33:9 [INFO] [stderr] | [INFO] [stderr] 33 | let mut Two_layer_network = two_layer_net::Two_layer_network { [INFO] [stderr] | ----^^^^^^^^^^^^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] | [INFO] [stderr] = note: #[warn(unused_mut)] on by default [INFO] [stderr] [INFO] [stderr] warning: unused imports: `RefMut`, `Ref` [INFO] [stderr] --> src/gradient.rs:5:26 [INFO] [stderr] | [INFO] [stderr] 5 | use std::cell::{RefCell, Ref, RefMut}; [INFO] [stderr] | ^^^ ^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: #[warn(unused_imports)] on by default [INFO] [stderr] [INFO] [stderr] warning: unused import: `std::cell::RefCell` [INFO] [stderr] --> src/nural.rs:5:5 [INFO] [stderr] | [INFO] [stderr] 5 | use std::cell::RefCell; [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: function is never used: `mean_squared_error` [INFO] [stderr] --> src/lossfunc.rs:11:1 [INFO] [stderr] | [INFO] [stderr] 11 | pub fn mean_squared_error(y: DMatrix, t: DMatrix) -> f64 { [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: #[warn(dead_code)] on by default [INFO] [stderr] [INFO] [stderr] warning: function is never used: `numerical_gradient` [INFO] [stderr] --> src/gradient.rs:8:1 [INFO] [stderr] | [INFO] [stderr] 8 | / pub fn numerical_gradient< [INFO] [stderr] 9 | | F: Fn(&DMatrix, [INFO] [stderr] 10 | | &DMatrix, [INFO] [stderr] 11 | | &DMatrix, [INFO] [stderr] ... | [INFO] [stderr] 38 | | grad [INFO] [stderr] 39 | | } [INFO] [stderr] | |_^ [INFO] [stderr] [INFO] [stderr] warning: function is never used: `function_2` [INFO] [stderr] --> src/gradient.rs:40:1 [INFO] [stderr] | [INFO] [stderr] 40 | pub fn function_2(x: &mut DMatrix) -> f64 { [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: method is never used: `predict` [INFO] [stderr] --> src/nural.rs:11:5 [INFO] [stderr] | [INFO] [stderr] 11 | pub fn predict(self, x: &DMatrix) -> DMatrix { [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: method is never used: `loss` [INFO] [stderr] --> src/nural.rs:14:5 [INFO] [stderr] | [INFO] [stderr] 14 | pub fn loss(self, x: &DMatrix, t: &DMatrix) -> f64 { [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: method is never used: `numerical_gradient` [INFO] [stderr] --> src/two_layer_net.rs:91:5 [INFO] [stderr] | [INFO] [stderr] 91 | pub fn numerical_gradient(&mut self, x: &DMatrix, t: &DMatrix) -> grad { [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: function is never used: `loss_w` [INFO] [stderr] --> src/two_layer_net.rs:128:1 [INFO] [stderr] | [INFO] [stderr] 128 | / pub fn loss_w( [INFO] [stderr] 129 | | param: &DMatrix, [INFO] [stderr] 130 | | x: &DMatrix, [INFO] [stderr] 131 | | t: &DMatrix, [INFO] [stderr] ... | [INFO] [stderr] 135 | | two.loss(param, x, t, &patern) [INFO] [stderr] 136 | | } [INFO] [stderr] | |_^ [INFO] [stderr] [INFO] [stderr] warning: function `axisZerosum` should have a snake case name such as `axis_zerosum` [INFO] [stderr] --> src/nural.rs:32:1 [INFO] [stderr] | [INFO] [stderr] 32 | / pub fn axisZerosum(x: &DMatrix) -> DMatrix { [INFO] [stderr] 33 | | let zerosum = DMatrix::::from_iterator( [INFO] [stderr] 34 | | 1, [INFO] [stderr] 35 | | x.shape().1, [INFO] [stderr] ... | [INFO] [stderr] 44 | | [INFO] [stderr] 45 | | } [INFO] [stderr] | |_^ [INFO] [stderr] | [INFO] [stderr] = note: #[warn(non_snake_case)] on by default [INFO] [stderr] [INFO] [stderr] warning: function `createVec` should have a snake case name such as `create_vec` [INFO] [stderr] --> src/nural.rs:47:1 [INFO] [stderr] | [INFO] [stderr] 47 | / pub fn createVec(x: usize) -> Vec { [INFO] [stderr] 48 | | let mut vec = Vec::with_capacity(x); [INFO] [stderr] 49 | | for i in 0..x { [INFO] [stderr] 50 | | vec.push(i); [INFO] [stderr] 51 | | } [INFO] [stderr] 52 | | vec [INFO] [stderr] 53 | | } [INFO] [stderr] | |_^ [INFO] [stderr] [INFO] [stderr] warning: type `grad` should have a camel case name such as `Grad` [INFO] [stderr] --> src/two_layer_net.rs:13:1 [INFO] [stderr] | [INFO] [stderr] 13 | / pub struct grad { [INFO] [stderr] 14 | | pub w1: DMatrix, [INFO] [stderr] 15 | | pub b1: DMatrix, [INFO] [stderr] 16 | | pub w2: DMatrix, [INFO] [stderr] 17 | | pub b2: DMatrix, [INFO] [stderr] 18 | | } [INFO] [stderr] | |_^ [INFO] [stderr] | [INFO] [stderr] = note: #[warn(non_camel_case_types)] on by default [INFO] [stderr] [INFO] [stderr] warning: type `Two_layer_network` should have a camel case name such as `TwoLayerNetwork` [INFO] [stderr] --> src/two_layer_net.rs:19:1 [INFO] [stderr] | [INFO] [stderr] 19 | / pub struct Two_layer_network { [INFO] [stderr] 20 | | pub w1: Rc>>, [INFO] [stderr] 21 | | pub b1: Rc>>, [INFO] [stderr] 22 | | pub w2: Rc>>, [INFO] [stderr] 23 | | pub b2: Rc>>, [INFO] [stderr] 24 | | } [INFO] [stderr] | |_^ [INFO] [stderr] [INFO] [stderr] warning: variable `Two_layer_network` should have a snake case name such as `two_layer_network` [INFO] [stderr] --> src/main.rs:33:9 [INFO] [stderr] | [INFO] [stderr] 33 | let mut Two_layer_network = two_layer_net::Two_layer_network { [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: unused variable: `rows` [INFO] [stderr] --> src/main.rs:21:16 [INFO] [stderr] | [INFO] [stderr] 21 | let (size, rows, cols) = (60_000, 28, 28); [INFO] [stderr] | ^^^^ help: consider using `_rows` instead [INFO] [stderr] | [INFO] [stderr] = note: #[warn(unused_variables)] on by default [INFO] [stderr] [INFO] [stderr] warning: unused variable: `cols` [INFO] [stderr] --> src/main.rs:21:22 [INFO] [stderr] | [INFO] [stderr] 21 | let (size, rows, cols) = (60_000, 28, 28); [INFO] [stderr] | ^^^^ help: consider using `_cols` instead [INFO] [stderr] [INFO] [stderr] warning: unused variable: `batch_size` [INFO] [stderr] --> src/main.rs:40:9 [INFO] [stderr] | [INFO] [stderr] 40 | let batch_size = 100; [INFO] [stderr] | ^^^^^^^^^^ help: consider using `_batch_size` instead [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/main.rs:33:9 [INFO] [stderr] | [INFO] [stderr] 33 | let mut Two_layer_network = two_layer_net::Two_layer_network { [INFO] [stderr] | ----^^^^^^^^^^^^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] | [INFO] [stderr] = note: #[warn(unused_mut)] on by default [INFO] [stderr] [INFO] [stderr] warning: function is never used: `numerical_gradient` [INFO] [stderr] --> src/gradient.rs:8:1 [INFO] [stderr] | [INFO] [stderr] 8 | / pub fn numerical_gradient< [INFO] [stderr] 9 | | F: Fn(&DMatrix, [INFO] [stderr] 10 | | &DMatrix, [INFO] [stderr] 11 | | &DMatrix, [INFO] [stderr] ... | [INFO] [stderr] 38 | | grad [INFO] [stderr] 39 | | } [INFO] [stderr] | |_^ [INFO] [stderr] | [INFO] [stderr] = note: #[warn(dead_code)] on by default [INFO] [stderr] [INFO] [stderr] warning: method is never used: `numerical_gradient` [INFO] [stderr] --> src/two_layer_net.rs:91:5 [INFO] [stderr] | [INFO] [stderr] 91 | pub fn numerical_gradient(&mut self, x: &DMatrix, t: &DMatrix) -> grad { [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: function is never used: `loss_w` [INFO] [stderr] --> src/two_layer_net.rs:128:1 [INFO] [stderr] | [INFO] [stderr] 128 | / pub fn loss_w( [INFO] [stderr] 129 | | param: &DMatrix, [INFO] [stderr] 130 | | x: &DMatrix, [INFO] [stderr] 131 | | t: &DMatrix, [INFO] [stderr] ... | [INFO] [stderr] 135 | | two.loss(param, x, t, &patern) [INFO] [stderr] 136 | | } [INFO] [stderr] | |_^ [INFO] [stderr] [INFO] [stderr] warning: function `axisZerosum` should have a snake case name such as `axis_zerosum` [INFO] [stderr] --> src/nural.rs:32:1 [INFO] [stderr] | [INFO] [stderr] 32 | / pub fn axisZerosum(x: &DMatrix) -> DMatrix { [INFO] [stderr] 33 | | let zerosum = DMatrix::::from_iterator( [INFO] [stderr] 34 | | 1, [INFO] [stderr] 35 | | x.shape().1, [INFO] [stderr] ... | [INFO] [stderr] 44 | | [INFO] [stderr] 45 | | } [INFO] [stderr] | |_^ [INFO] [stderr] | [INFO] [stderr] = note: #[warn(non_snake_case)] on by default [INFO] [stderr] [INFO] [stderr] warning: function `createVec` should have a snake case name such as `create_vec` [INFO] [stderr] --> src/nural.rs:47:1 [INFO] [stderr] | [INFO] [stderr] 47 | / pub fn createVec(x: usize) -> Vec { [INFO] [stderr] 48 | | let mut vec = Vec::with_capacity(x); [INFO] [stderr] 49 | | for i in 0..x { [INFO] [stderr] 50 | | vec.push(i); [INFO] [stderr] 51 | | } [INFO] [stderr] 52 | | vec [INFO] [stderr] 53 | | } [INFO] [stderr] | |_^ [INFO] [stderr] [INFO] [stderr] warning: type `grad` should have a camel case name such as `Grad` [INFO] [stderr] --> src/two_layer_net.rs:13:1 [INFO] [stderr] | [INFO] [stderr] 13 | / pub struct grad { [INFO] [stderr] 14 | | pub w1: DMatrix, [INFO] [stderr] 15 | | pub b1: DMatrix, [INFO] [stderr] 16 | | pub w2: DMatrix, [INFO] [stderr] 17 | | pub b2: DMatrix, [INFO] [stderr] 18 | | } [INFO] [stderr] | |_^ [INFO] [stderr] | [INFO] [stderr] = note: #[warn(non_camel_case_types)] on by default [INFO] [stderr] [INFO] [stderr] warning: type `Two_layer_network` should have a camel case name such as `TwoLayerNetwork` [INFO] [stderr] --> src/two_layer_net.rs:19:1 [INFO] [stderr] | [INFO] [stderr] 19 | / pub struct Two_layer_network { [INFO] [stderr] 20 | | pub w1: Rc>>, [INFO] [stderr] 21 | | pub b1: Rc>>, [INFO] [stderr] 22 | | pub w2: Rc>>, [INFO] [stderr] 23 | | pub b2: Rc>>, [INFO] [stderr] 24 | | } [INFO] [stderr] | |_^ [INFO] [stderr] [INFO] [stderr] warning: variable `Two_layer_network` should have a snake case name such as `two_layer_network` [INFO] [stderr] --> src/main.rs:33:9 [INFO] [stderr] | [INFO] [stderr] 33 | let mut Two_layer_network = two_layer_net::Two_layer_network { [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] Finished dev [unoptimized + debuginfo] target(s) in 42.74s [INFO] running `"docker" "inspect" "40f8320b4a4e9ba0f71cc3cb63b1bdc14d49d1cd966a8d64cfa395fe17bd0687"` [INFO] running `"docker" "rm" "-f" "40f8320b4a4e9ba0f71cc3cb63b1bdc14d49d1cd966a8d64cfa395fe17bd0687"` [INFO] [stdout] 40f8320b4a4e9ba0f71cc3cb63b1bdc14d49d1cd966a8d64cfa395fe17bd0687