[INFO] fetching crate sklears-neighbors 0.1.0-alpha.1... [INFO] checking sklears-neighbors-0.1.0-alpha.1 against master#e22dab387f6b4f6a87dfc54ac2f6013dddb41e68 for pr-149195 [INFO] extracting crate sklears-neighbors 0.1.0-alpha.1 into /workspace/builds/worker-2-tc1/source [INFO] started tweaking crates.io crate sklears-neighbors 0.1.0-alpha.1 [INFO] removed 0 missing examples [INFO] finished tweaking crates.io crate sklears-neighbors 0.1.0-alpha.1 [INFO] tweaked toml for crates.io crate sklears-neighbors 0.1.0-alpha.1 written to /workspace/builds/worker-2-tc1/source/Cargo.toml [INFO] validating manifest of crates.io crate sklears-neighbors 0.1.0-alpha.1 on toolchain e22dab387f6b4f6a87dfc54ac2f6013dddb41e68 [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+e22dab387f6b4f6a87dfc54ac2f6013dddb41e68" "metadata" "--manifest-path" "Cargo.toml" "--no-deps", kill_on_drop: false }` [INFO] crate crates.io crate sklears-neighbors 0.1.0-alpha.1 already has a lockfile, it will not be regenerated [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+e22dab387f6b4f6a87dfc54ac2f6013dddb41e68" "fetch" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] [stderr] Updating crates.io index [INFO] [stderr] Downloading crates ... [INFO] [stderr] Downloaded katexit v0.1.5 [INFO] [stderr] Downloaded lax v0.17.0 [INFO] [stderr] Downloaded ndarray-rand v0.15.0 [INFO] [stderr] Downloaded special v0.11.4 [INFO] [stderr] Downloaded iter-read v1.1.0 [INFO] [stderr] Downloaded ppmd-rust v1.2.1 [INFO] [stderr] Downloaded friedrich v0.5.0 [INFO] [stderr] Downloaded argmin-math v0.5.1 [INFO] [stderr] Downloaded ndarray-linalg v0.17.0 [INFO] [stderr] Downloaded lambert_w v1.2.28 [INFO] [stderr] Downloaded argmin v0.11.0 [INFO] [stderr] Downloaded zip v5.1.1 [INFO] [stderr] Downloaded sprs v0.11.3 [INFO] [stderr] Downloaded proptest v1.8.0 [INFO] [stderr] Downloaded sklears-utils v0.1.0-alpha.1 [INFO] [stderr] Downloaded sklears-metrics v0.1.0-alpha.1 [INFO] [stderr] Downloaded serde-pickle v1.2.0 [INFO] [stderr] Downloaded scirs2-sparse v0.1.0-rc.1 [INFO] [stderr] Downloaded scirs2-optimize v0.1.0-rc.1 [INFO] [stderr] Downloaded sklears-core v0.1.0-alpha.1 [INFO] [stderr] Downloaded scirs2-linalg v0.1.0-rc.1 [INFO] [stderr] Downloaded numrs2 v0.1.0-beta.3 [INFO] [stderr] Downloaded scirs2-core v0.1.0-rc.1 [INFO] [stderr] Downloaded scirs2-stats v0.1.0-rc.1 [INFO] [stderr] Downloaded lapack-sys v0.14.0 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-2-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-2-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:94a0c148923f5b2b52a63ef0eeb1882ad339ab61bce784c8077cbe41c61feb6c" "/opt/rustwide/cargo-home/bin/cargo" "+e22dab387f6b4f6a87dfc54ac2f6013dddb41e68" "metadata" "--no-deps" "--format-version=1", kill_on_drop: false }` [INFO] [stdout] ac93c0b807a0f0d6e52281b43a025c964ea49e0bbe1e6a187fd3d473b42ad186 [INFO] running `Command { std: "docker" "start" "-a" "ac93c0b807a0f0d6e52281b43a025c964ea49e0bbe1e6a187fd3d473b42ad186", kill_on_drop: false }` [INFO] running `Command { std: "docker" "inspect" "ac93c0b807a0f0d6e52281b43a025c964ea49e0bbe1e6a187fd3d473b42ad186", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "ac93c0b807a0f0d6e52281b43a025c964ea49e0bbe1e6a187fd3d473b42ad186", kill_on_drop: false }` [INFO] [stdout] ac93c0b807a0f0d6e52281b43a025c964ea49e0bbe1e6a187fd3d473b42ad186 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-2-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-2-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:94a0c148923f5b2b52a63ef0eeb1882ad339ab61bce784c8077cbe41c61feb6c" "/opt/rustwide/cargo-home/bin/cargo" "+e22dab387f6b4f6a87dfc54ac2f6013dddb41e68" "check" "--frozen" "--all" "--all-targets" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] 8c2d351c887a234bf89f7aa67e23853770d01e34eb490f6734f23310bc6d2f15 [INFO] running `Command { std: "docker" "start" "-a" "8c2d351c887a234bf89f7aa67e23853770d01e34eb490f6734f23310bc6d2f15", kill_on_drop: false }` [INFO] [stderr] Compiling proc-macro2 v1.0.101 [INFO] [stderr] Compiling quote v1.0.41 [INFO] [stderr] Compiling matrixmultiply v0.3.10 [INFO] [stderr] Checking bytemuck v1.23.2 [INFO] [stderr] Checking getrandom v0.2.16 [INFO] [stderr] Checking getrandom v0.3.3 [INFO] [stderr] Compiling libc v0.2.176 [INFO] [stderr] Checking num-integer v0.1.46 [INFO] [stderr] Checking regex-automata v0.4.11 [INFO] [stderr] Checking lapack-sys v0.14.0 [INFO] [stderr] Checking crossbeam-channel v0.5.15 [INFO] [stderr] Compiling scirs2-core v0.1.0-rc.1 [INFO] [stderr] Checking num_cpus v1.17.0 [INFO] [stderr] Compiling lambert_w v1.2.28 [INFO] [stderr] Checking zlib-rs v0.5.2 [INFO] [stderr] Checking crc v3.3.0 [INFO] [stderr] Checking sha2 v0.10.9 [INFO] [stderr] Checking bumpalo v3.19.0 [INFO] [stderr] Checking rand_core v0.9.3 [INFO] [stderr] Checking rand_core v0.6.4 [INFO] [stderr] Checking libbz2-rs-sys v0.2.2 [INFO] [stderr] Checking num-rational v0.4.2 [INFO] [stderr] Checking safe_arch v0.7.4 [INFO] [stderr] Checking num-bigint v0.4.6 [INFO] [stderr] Checking time v0.3.44 [INFO] [stderr] Checking rand_chacha v0.3.1 [INFO] [stderr] Checking zopfli v0.8.2 [INFO] [stderr] Checking lzma-rust2 v0.13.0 [INFO] [stderr] Checking crossbeam v0.8.4 [INFO] [stderr] Checking rand_chacha v0.9.0 [INFO] [stderr] Checking aes v0.8.4 [INFO] [stderr] Checking sha1 v0.10.6 [INFO] [stderr] Checking ppmd-rust v1.2.1 [INFO] [stderr] Checking rand v0.8.5 [INFO] [stderr] Checking rand v0.9.2 [INFO] [stderr] Checking bzip2 v0.6.0 [INFO] [stderr] Checking iter-read v1.1.0 [INFO] [stderr] Compiling syn v2.0.106 [INFO] [stderr] Checking wide v0.7.33 [INFO] [stderr] Compiling syn v1.0.109 [INFO] [stderr] Compiling rustc_version_runtime v0.3.0 [INFO] [stderr] Checking semver v1.0.27 [INFO] [stderr] Checking bitflags v2.9.4 [INFO] [stderr] Checking rand_xoshiro v0.7.0 [INFO] [stderr] Compiling jobserver v0.1.34 [INFO] [stderr] Checking clap_builder v4.5.48 [INFO] [stderr] Checking rustix v1.1.2 [INFO] [stderr] Checking rustc_version v0.4.1 [INFO] [stderr] Compiling cc v1.2.39 [INFO] [stderr] Checking libz-rs-sys v0.5.2 [INFO] [stderr] Checking rand_distr v0.4.3 [INFO] [stderr] Checking wait-timeout v0.2.1 [INFO] [stderr] Checking bit-vec v0.8.0 [INFO] [stderr] Checking flate2 v1.1.2 [INFO] [stderr] Checking criterion-plot v0.5.0 [INFO] [stderr] Checking rand_distr v0.5.1 [INFO] [stderr] Checking plotters v0.3.7 [INFO] [stderr] Checking rand_xorshift v0.4.0 [INFO] [stderr] Checking is-terminal v0.4.16 [INFO] [stderr] Checking unarray v0.1.4 [INFO] [stderr] Checking bit-set v0.8.0 [INFO] [stderr] Checking regex v1.11.3 [INFO] [stderr] Checking env_logger v0.8.4 [INFO] [stderr] Compiling zstd-sys v2.0.16+zstd.1.5.7 [INFO] [stderr] Checking quickcheck v1.0.3 [INFO] [stderr] Checking clap v4.5.48 [INFO] [stderr] Checking tempfile v3.23.0 [INFO] [stderr] Checking rusty-fork v0.3.0 [INFO] [stderr] Checking proptest v1.8.0 [INFO] [stderr] Compiling nalgebra-macros v0.1.0 [INFO] [stderr] Compiling serde_derive v1.0.228 [INFO] [stderr] Compiling thiserror-impl v2.0.17 [INFO] [stderr] Compiling katexit v0.1.5 [INFO] [stderr] Compiling zeroize_derive v1.4.2 [INFO] [stderr] Compiling thiserror-impl v1.0.69 [INFO] [stderr] Checking zeroize v1.8.2 [INFO] [stderr] Compiling zstd-safe v7.2.4 [INFO] [stderr] Checking thiserror v1.0.69 [INFO] [stderr] Checking zstd v0.13.3 [INFO] [stderr] Checking thiserror v2.0.17 [INFO] [stderr] Checking zip v5.1.1 [INFO] [stderr] Checking serde v1.0.228 [INFO] [stderr] Checking num-complex v0.4.6 [INFO] [stderr] Checking half v2.6.0 [INFO] [stderr] Checking chrono v0.4.42 [INFO] [stderr] Checking uuid v1.18.1 [INFO] [stderr] Checking bincode v2.0.1 [INFO] [stderr] Checking csv v1.3.1 [INFO] [stderr] Checking serde-pickle v1.2.0 [INFO] [stderr] Checking tinytemplate v1.2.1 [INFO] [stderr] Checking ciborium-ll v0.2.2 [INFO] [stderr] Checking ndarray v0.16.1 [INFO] [stderr] Checking cauchy v0.4.0 [INFO] [stderr] Checking simba v0.9.1 [INFO] [stderr] Checking simba v0.7.3 [INFO] [stderr] Checking argmin-math v0.5.1 [INFO] [stderr] Checking special v0.11.4 [INFO] [stderr] Checking ciborium v0.2.2 [INFO] [stderr] Checking lax v0.17.0 [INFO] [stderr] Checking argmin v0.11.0 [INFO] [stderr] Checking criterion v0.5.1 [INFO] [stderr] Checking ndarray-linalg v0.17.0 [INFO] [stderr] Checking ndarray-rand v0.15.0 [INFO] [stderr] Checking sprs v0.11.3 [INFO] [stderr] Checking nalgebra v0.30.1 [INFO] [stderr] Checking nalgebra v0.33.2 [INFO] [stderr] Checking statrs v0.18.0 [INFO] [stderr] Checking friedrich v0.5.0 [INFO] [stderr] Checking scirs2-linalg v0.1.0-rc.1 [INFO] [stderr] Checking scirs2-sparse v0.1.0-rc.1 [INFO] [stderr] Checking scirs2-stats v0.1.0-rc.1 [INFO] [stderr] Checking scirs2-optimize v0.1.0-rc.1 [INFO] [stderr] Checking numrs2 v0.1.0-beta.3 [INFO] [stderr] Checking sklears-core v0.1.0-alpha.1 [INFO] [stderr] Checking sklears-utils v0.1.0-alpha.1 [INFO] [stderr] Checking sklears-metrics v0.1.0-alpha.1 [INFO] [stderr] Checking sklears-neighbors v0.1.0-alpha.1 (/opt/rustwide/workdir) [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/compressed_distance.rs:436:14 [INFO] [stdout] | [INFO] [stdout] 436 | for (i, row) in distances.axis_iter(Axis(0)).enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `j` [INFO] [stdout] --> src/compressed_distance.rs:437:18 [INFO] [stdout] | [INFO] [stdout] 437 | for (j, &val) in row.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_j` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `threshold` [INFO] [stdout] --> src/compressed_distance.rs:596:9 [INFO] [stdout] | [INFO] [stdout] 596 | threshold: Float, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_threshold` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dense_count` [INFO] [stdout] --> src/compressed_distance.rs:600:13 [INFO] [stdout] | [INFO] [stdout] 600 | let dense_count = shape.0 * shape.1 - sparse_count; [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_dense_count` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/compressed_distance.rs:710:14 [INFO] [stdout] | [INFO] [stdout] 710 | for (i, &byte) in row_data.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `col` [INFO] [stdout] --> src/compressed_distance.rs:763:20 [INFO] [stdout] | [INFO] [stdout] 763 | .map(|(col, sparse_idx)| sparse_idx) [INFO] [stdout] | ^^^ help: if this is intentional, prefix it with an underscore: `_col` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `threshold` [INFO] [stdout] --> src/compressed_distance.rs:750:9 [INFO] [stdout] | [INFO] [stdout] 750 | threshold: Float, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_threshold` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `row_sparse_indices` [INFO] [stdout] --> src/compressed_distance.rs:756:13 [INFO] [stdout] | [INFO] [stdout] 756 | let row_sparse_indices: Vec = indices [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_row_sparse_indices` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `fold_start` [INFO] [stdout] --> src/cross_validation.rs:217:17 [INFO] [stdout] | [INFO] [stdout] 217 | let fold_start = std::time::Instant::now(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_fold_start` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `train_densities` [INFO] [stdout] --> src/density_estimation.rs:922:13 [INFO] [stdout] | [INFO] [stdout] 922 | let train_densities = self [INFO] [stdout] | ^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_train_densities` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/distributed_neighbors.rs:211:14 [INFO] [stdout] | [INFO] [stdout] 211 | for (i, (_, _, stats)) in partition_results.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `batch` [INFO] [stdout] --> src/incremental_index.rs:393:13 [INFO] [stdout] | [INFO] [stdout] 393 | let batch = { [INFO] [stdout] | ^^^^^ help: if this is intentional, prefix it with an underscore: `_batch` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_train` [INFO] [stdout] --> src/local_outlier_factor.rs:298:13 [INFO] [stdout] | [INFO] [stdout] 298 | let n_train = x_train.nrows(); [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_train` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `M` [INFO] [stdout] --> src/manifold_learning.rs:206:13 [INFO] [stdout] | [INFO] [stdout] 206 | let M = I_minus_W.t().dot(&I_minus_W); [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_M` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/manifold_learning.rs:261:25 [INFO] [stdout] | [INFO] [stdout] 261 | fn transform(&self, X: &Features) -> Result> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/manifold_learning.rs:450:25 [INFO] [stdout] | [INFO] [stdout] 450 | fn transform(&self, X: &Features) -> Result> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/manifold_learning.rs:678:25 [INFO] [stdout] | [INFO] [stdout] 678 | fn transform(&self, X: &Features) -> Result> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/manifold_learning.rs:924:25 [INFO] [stdout] | [INFO] [stdout] 924 | fn transform(&self, X: &Features) -> Result> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `node_assignments` [INFO] [stdout] --> src/mapreduce_neighbors.rs:456:9 [INFO] [stdout] | [INFO] [stdout] 456 | node_assignments: &[usize], [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_node_assignments` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `rng` [INFO] [stdout] --> src/metric_learning.rs:266:13 [INFO] [stdout] | [INFO] [stdout] 266 | let rng = StdRng::seed_from_u64(rng_seed); [INFO] [stdout] | ^^^ help: if this is intentional, prefix it with an underscore: `_rng` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `iteration` [INFO] [stdout] --> src/metric_learning.rs:274:13 [INFO] [stdout] | [INFO] [stdout] 274 | for iteration in 0..self.max_iter { [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_iteration` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/metric_learning.rs:784:13 [INFO] [stdout] | [INFO] [stdout] 784 | let n_features = x.ncols(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `class_idx` [INFO] [stdout] --> src/nearest_centroid.rs:434:9 [INFO] [stdout] | [INFO] [stdout] 434 | class_idx: usize, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_class_idx` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `leaf_size` [INFO] [stdout] --> src/parallel_tree.rs:574:9 [INFO] [stdout] | [INFO] [stdout] 574 | leaf_size: usize, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_leaf_size` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> src/parallel_tree.rs:598:9 [INFO] [stdout] | [INFO] [stdout] 598 | data: &Array2, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `col_indices` [INFO] [stdout] --> src/sparse_neighbors.rs:268:17 [INFO] [stdout] | [INFO] [stdout] 268 | col_indices, [INFO] [stdout] | ^^^^^^^^^^^ help: try ignoring the field: `col_indices: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `col_indices` [INFO] [stdout] --> src/sparse_neighbors.rs:282:17 [INFO] [stdout] | [INFO] [stdout] 282 | col_indices, [INFO] [stdout] | ^^^^^^^^^^^ help: try ignoring the field: `col_indices: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `col_ptr` [INFO] [stdout] --> src/sparse_neighbors.rs:299:17 [INFO] [stdout] | [INFO] [stdout] 299 | col_ptr, [INFO] [stdout] | ^^^^^^^ help: try ignoring the field: `col_ptr: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `depth` [INFO] [stdout] --> src/spatial.rs:639:9 [INFO] [stdout] | [INFO] [stdout] 639 | depth: usize, [INFO] [stdout] | ^^^^^ help: if this is intentional, prefix it with an underscore: `_depth` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `bounds` [INFO] [stdout] --> src/spatial.rs:789:38 [INFO] [stdout] | [INFO] [stdout] 789 | QuadTreeNode::Internal { bounds, children } => { [INFO] [stdout] | ^^^^^^ help: try ignoring the field: `bounds: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dim` [INFO] [stdout] --> src/spatial.rs:1662:13 [INFO] [stdout] | [INFO] [stdout] 1662 | for dim in 0..self.dimensions { [INFO] [stdout] | ^^^ help: if this is intentional, prefix it with an underscore: `_dim` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `scirs2_core::random::Rng` [INFO] [stdout] --> src/comprehensive_tests.rs:17:5 [INFO] [stdout] | [INFO] [stdout] 17 | use scirs2_core::random::Rng; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `test_data` [INFO] [stdout] --> src/batch_processing.rs:486:13 [INFO] [stdout] | [INFO] [stdout] 486 | let test_data = [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_test_data` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `search` [INFO] [stdout] --> src/batch_processing.rs:489:13 [INFO] [stdout] | [INFO] [stdout] 489 | let search = BatchNeighborSearch::new(3, Distance::Euclidean, training_data); [INFO] [stdout] | ^^^^^^ help: if this is intentional, prefix it with an underscore: `_search` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/compressed_distance.rs:436:14 [INFO] [stdout] | [INFO] [stdout] 436 | for (i, row) in distances.axis_iter(Axis(0)).enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `j` [INFO] [stdout] --> src/compressed_distance.rs:437:18 [INFO] [stdout] | [INFO] [stdout] 437 | for (j, &val) in row.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_j` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `threshold` [INFO] [stdout] --> src/compressed_distance.rs:596:9 [INFO] [stdout] | [INFO] [stdout] 596 | threshold: Float, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_threshold` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dense_count` [INFO] [stdout] --> src/compressed_distance.rs:600:13 [INFO] [stdout] | [INFO] [stdout] 600 | let dense_count = shape.0 * shape.1 - sparse_count; [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_dense_count` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/compressed_distance.rs:710:14 [INFO] [stdout] | [INFO] [stdout] 710 | for (i, &byte) in row_data.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `col` [INFO] [stdout] --> src/compressed_distance.rs:763:20 [INFO] [stdout] | [INFO] [stdout] 763 | .map(|(col, sparse_idx)| sparse_idx) [INFO] [stdout] | ^^^ help: if this is intentional, prefix it with an underscore: `_col` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `threshold` [INFO] [stdout] --> src/compressed_distance.rs:750:9 [INFO] [stdout] | [INFO] [stdout] 750 | threshold: Float, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_threshold` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `row_sparse_indices` [INFO] [stdout] --> src/compressed_distance.rs:756:13 [INFO] [stdout] | [INFO] [stdout] 756 | let row_sparse_indices: Vec = indices [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_row_sparse_indices` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `feature_dim` [INFO] [stdout] --> src/computer_vision.rs:1262:26 [INFO] [stdout] | [INFO] [stdout] 1262 | let (num_images, feature_dim, _) = search.get_stats(); [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_feature_dim` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `fold_start` [INFO] [stdout] --> src/cross_validation.rs:217:17 [INFO] [stdout] | [INFO] [stdout] 217 | let fold_start = std::time::Instant::now(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_fold_start` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `train_densities` [INFO] [stdout] --> src/density_estimation.rs:922:13 [INFO] [stdout] | [INFO] [stdout] 922 | let train_densities = self [INFO] [stdout] | ^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_train_densities` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/distributed_neighbors.rs:211:14 [INFO] [stdout] | [INFO] [stdout] 211 | for (i, (_, _, stats)) in partition_results.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: use of deprecated method `scirs2_core::Rng::gen`: Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024. [INFO] [stdout] --> benches/knn_bench.rs:22:29 [INFO] [stdout] | [INFO] [stdout] 22 | let noise = rng.gen::() * 0.5; [INFO] [stdout] | ^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(deprecated)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `batch` [INFO] [stdout] --> src/incremental_index.rs:393:13 [INFO] [stdout] | [INFO] [stdout] 393 | let batch = { [INFO] [stdout] | ^^^^^ help: if this is intentional, prefix it with an underscore: `_batch` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: use of deprecated method `scirs2_core::Rng::gen`: Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024. [INFO] [stdout] --> benches/knn_bench.rs:43:29 [INFO] [stdout] | [INFO] [stdout] 43 | let value = rng.gen::() * 10.0 - 5.0; [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: use of deprecated method `scirs2_core::Rng::gen`: Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024. [INFO] [stdout] --> benches/knn_bench.rs:47:40 [INFO] [stdout] | [INFO] [stdout] 47 | targets.push(feature_sum + rng.gen::() * 0.1); [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:61:18 [INFO] [stdout] | [INFO] [stdout] 61 | let (X, y) = generate_classification_data(n_samples, n_features); [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(non_snake_case)]` (part of `#[warn(nonstandard_style)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:67:22 [INFO] [stdout] | [INFO] [stdout] 67 | |b, (X, y)| { [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:84:18 [INFO] [stdout] | [INFO] [stdout] 84 | let (X, y) = generate_classification_data(n_samples, n_features); [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:92:22 [INFO] [stdout] | [INFO] [stdout] 92 | |b, (X, classifier)| b.iter(|| black_box(classifier.predict(X).unwrap())), [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:104:18 [INFO] [stdout] | [INFO] [stdout] 104 | let (X, y) = generate_regression_data(n_samples, n_features); [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:110:22 [INFO] [stdout] | [INFO] [stdout] 110 | |b, (X, y)| { [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:126:14 [INFO] [stdout] | [INFO] [stdout] 126 | let (X, y) = generate_classification_data(n_samples, 10); [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:134:18 [INFO] [stdout] | [INFO] [stdout] 134 | |b, (X, classifier)| b.iter(|| black_box(classifier.predict_proba(X).unwrap())), [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `X` should have a snake case name [INFO] [stdout] --> benches/knn_bench.rs:142:10 [INFO] [stdout] | [INFO] [stdout] 142 | let (X, y) = generate_classification_data(500, 10); [INFO] [stdout] | ^ help: convert the identifier to snake case (notice the capitalization): `x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_train` [INFO] [stdout] --> src/local_outlier_factor.rs:298:13 [INFO] [stdout] | [INFO] [stdout] 298 | let n_train = x_train.nrows(); [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_train` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `M` [INFO] [stdout] --> src/manifold_learning.rs:206:13 [INFO] [stdout] | [INFO] [stdout] 206 | let M = I_minus_W.t().dot(&I_minus_W); [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_M` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/manifold_learning.rs:261:25 [INFO] [stdout] | [INFO] [stdout] 261 | fn transform(&self, X: &Features) -> Result> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/manifold_learning.rs:450:25 [INFO] [stdout] | [INFO] [stdout] 450 | fn transform(&self, X: &Features) -> Result> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/manifold_learning.rs:678:25 [INFO] [stdout] | [INFO] [stdout] 678 | fn transform(&self, X: &Features) -> Result> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/manifold_learning.rs:924:25 [INFO] [stdout] | [INFO] [stdout] 924 | fn transform(&self, X: &Features) -> Result> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `node_assignments` [INFO] [stdout] --> src/mapreduce_neighbors.rs:456:9 [INFO] [stdout] | [INFO] [stdout] 456 | node_assignments: &[usize], [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_node_assignments` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `empty_x` [INFO] [stdout] --> src/mapreduce_neighbors.rs:637:13 [INFO] [stdout] | [INFO] [stdout] 637 | let empty_x = Array2::::zeros((0, 2)); [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_empty_x` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `rng` [INFO] [stdout] --> src/metric_learning.rs:266:13 [INFO] [stdout] | [INFO] [stdout] 266 | let rng = StdRng::seed_from_u64(rng_seed); [INFO] [stdout] | ^^^ help: if this is intentional, prefix it with an underscore: `_rng` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `iteration` [INFO] [stdout] --> src/metric_learning.rs:274:13 [INFO] [stdout] | [INFO] [stdout] 274 | for iteration in 0..self.max_iter { [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_iteration` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/metric_learning.rs:784:13 [INFO] [stdout] | [INFO] [stdout] 784 | let n_features = x.ncols(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `class_idx` [INFO] [stdout] --> src/nearest_centroid.rs:434:9 [INFO] [stdout] | [INFO] [stdout] 434 | class_idx: usize, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_class_idx` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dists` [INFO] [stdout] --> src/nearest_neighbors.rs:380:13 [INFO] [stdout] | [INFO] [stdout] 380 | let dists = distances.unwrap(); [INFO] [stdout] | ^^^^^ help: if this is intentional, prefix it with an underscore: `_dists` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `leaf_size` [INFO] [stdout] --> src/parallel_tree.rs:574:9 [INFO] [stdout] | [INFO] [stdout] 574 | leaf_size: usize, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_leaf_size` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> src/parallel_tree.rs:598:9 [INFO] [stdout] | [INFO] [stdout] 598 | data: &Array2, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `col_indices` [INFO] [stdout] --> src/sparse_neighbors.rs:268:17 [INFO] [stdout] | [INFO] [stdout] 268 | col_indices, [INFO] [stdout] | ^^^^^^^^^^^ help: try ignoring the field: `col_indices: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `col_indices` [INFO] [stdout] --> src/sparse_neighbors.rs:282:17 [INFO] [stdout] | [INFO] [stdout] 282 | col_indices, [INFO] [stdout] | ^^^^^^^^^^^ help: try ignoring the field: `col_indices: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `col_ptr` [INFO] [stdout] --> src/sparse_neighbors.rs:299:17 [INFO] [stdout] | [INFO] [stdout] 299 | col_ptr, [INFO] [stdout] | ^^^^^^^ help: try ignoring the field: `col_ptr: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `distances` [INFO] [stdout] --> src/sparse_neighbors.rs:879:25 [INFO] [stdout] | [INFO] [stdout] 879 | let (neighbors, distances) = sparse.get_neighbors(0).unwrap(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_distances` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `depth` [INFO] [stdout] --> src/spatial.rs:639:9 [INFO] [stdout] | [INFO] [stdout] 639 | depth: usize, [INFO] [stdout] | ^^^^^ help: if this is intentional, prefix it with an underscore: `_depth` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `bounds` [INFO] [stdout] --> src/spatial.rs:789:38 [INFO] [stdout] | [INFO] [stdout] 789 | QuadTreeNode::Internal { bounds, children } => { [INFO] [stdout] | ^^^^^^ help: try ignoring the field: `bounds: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dim` [INFO] [stdout] --> src/spatial.rs:1662:13 [INFO] [stdout] | [INFO] [stdout] 1662 | for dim in 0..self.dimensions { [INFO] [stdout] | ^^^ help: if this is intentional, prefix it with an underscore: `_dim` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `knn_brute` [INFO] [stdout] --> src/comprehensive_tests.rs:181:25 [INFO] [stdout] | [INFO] [stdout] 181 | let knn_brute = KNeighborsClassifier::new(k).with_metric(distance.clone()); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_knn_brute` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `fitted` [INFO] [stdout] --> src/comprehensive_tests.rs:402:21 [INFO] [stdout] | [INFO] [stdout] 402 | let fitted = classifier.fit(&x, &y); [INFO] [stdout] | ^^^^^^ help: if this is intentional, prefix it with an underscore: `_fitted` [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `dev` profile [unoptimized + debuginfo] target(s) in 1m 54s [INFO] running `Command { std: "docker" "inspect" "8c2d351c887a234bf89f7aa67e23853770d01e34eb490f6734f23310bc6d2f15", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "8c2d351c887a234bf89f7aa67e23853770d01e34eb490f6734f23310bc6d2f15", kill_on_drop: false }` [INFO] [stdout] 8c2d351c887a234bf89f7aa67e23853770d01e34eb490f6734f23310bc6d2f15