[INFO] fetching crate sklears-impute 0.1.0-alpha.1... [INFO] checking sklears-impute-0.1.0-alpha.1 against master#e22dab387f6b4f6a87dfc54ac2f6013dddb41e68 for pr-149195 [INFO] extracting crate sklears-impute 0.1.0-alpha.1 into /workspace/builds/worker-6-tc1/source [INFO] started tweaking crates.io crate sklears-impute 0.1.0-alpha.1 [INFO] removed 0 missing examples [INFO] finished tweaking crates.io crate sklears-impute 0.1.0-alpha.1 [INFO] tweaked toml for crates.io crate sklears-impute 0.1.0-alpha.1 written to /workspace/builds/worker-6-tc1/source/Cargo.toml [INFO] validating manifest of crates.io crate sklears-impute 0.1.0-alpha.1 on toolchain e22dab387f6b4f6a87dfc54ac2f6013dddb41e68 [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+e22dab387f6b4f6a87dfc54ac2f6013dddb41e68" "metadata" "--manifest-path" "Cargo.toml" "--no-deps", kill_on_drop: false }` [INFO] crate crates.io crate sklears-impute 0.1.0-alpha.1 already has a lockfile, it will not be regenerated [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+e22dab387f6b4f6a87dfc54ac2f6013dddb41e68" "fetch" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] [stderr] Updating crates.io index [INFO] [stderr] Downloading crates ... [INFO] [stderr] Downloaded deflate64 v0.1.9 [INFO] [stderr] Downloaded special v0.11.4 [INFO] [stderr] Downloaded ppmd-rust v1.2.1 [INFO] [stderr] Downloaded friedrich v0.5.0 [INFO] [stderr] Downloaded simba v0.7.3 [INFO] [stderr] Downloaded argmin-math v0.5.1 [INFO] [stderr] Downloaded libbz2-rs-sys v0.2.2 [INFO] [stderr] Downloaded argmin v0.11.0 [INFO] [stderr] Downloaded sprs v0.11.3 [INFO] [stderr] Downloaded zip v5.1.1 [INFO] [stderr] Downloaded lambert_w v1.2.28 [INFO] [stderr] Downloaded sklears-utils v0.1.0-alpha.1 [INFO] [stderr] Downloaded lzma-rust2 v0.13.0 [INFO] [stderr] Downloaded nalgebra v0.30.1 [INFO] [stderr] Downloaded scirs2-sparse v0.1.0-rc.1 [INFO] [stderr] Downloaded scirs2-optimize v0.1.0-rc.1 [INFO] [stderr] Downloaded sklears-core v0.1.0-alpha.1 [INFO] [stderr] Downloaded numrs2 v0.1.0-beta.3 [INFO] [stderr] Downloaded scirs2-linalg v0.1.0-rc.1 [INFO] [stderr] Downloaded scirs2-core v0.1.0-rc.1 [INFO] [stderr] Downloaded scirs2-stats v0.1.0-rc.1 [INFO] [stderr] Downloaded scirs2-neural v0.1.0-rc.1 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-6-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-6-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:94a0c148923f5b2b52a63ef0eeb1882ad339ab61bce784c8077cbe41c61feb6c" "/opt/rustwide/cargo-home/bin/cargo" "+e22dab387f6b4f6a87dfc54ac2f6013dddb41e68" "metadata" "--no-deps" "--format-version=1", kill_on_drop: false }` [INFO] [stdout] 87710529fc962ac653952201be30303d6c336ef4eee8f39dae500511e5e58cef [INFO] running `Command { std: "docker" "start" "-a" "87710529fc962ac653952201be30303d6c336ef4eee8f39dae500511e5e58cef", kill_on_drop: false }` [INFO] running `Command { std: "docker" "inspect" "87710529fc962ac653952201be30303d6c336ef4eee8f39dae500511e5e58cef", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "87710529fc962ac653952201be30303d6c336ef4eee8f39dae500511e5e58cef", kill_on_drop: false }` [INFO] [stdout] 87710529fc962ac653952201be30303d6c336ef4eee8f39dae500511e5e58cef [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-6-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-6-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:94a0c148923f5b2b52a63ef0eeb1882ad339ab61bce784c8077cbe41c61feb6c" "/opt/rustwide/cargo-home/bin/cargo" "+e22dab387f6b4f6a87dfc54ac2f6013dddb41e68" "check" "--frozen" "--all" "--all-targets" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] a97f5ad71eb8719dc1c9ceb197695906a90c3311657d8b9316686e91bbd69d8f [INFO] running `Command { std: "docker" "start" "-a" "a97f5ad71eb8719dc1c9ceb197695906a90c3311657d8b9316686e91bbd69d8f", kill_on_drop: false }` [INFO] [stderr] Compiling proc-macro2 v1.0.101 [INFO] [stderr] Compiling quote v1.0.41 [INFO] [stderr] Compiling num-traits v0.2.19 [INFO] [stderr] Checking getrandom v0.2.16 [INFO] [stderr] Compiling matrixmultiply v0.3.10 [INFO] [stderr] Checking bytemuck v1.23.2 [INFO] [stderr] Checking getrandom v0.3.3 [INFO] [stderr] Checking either v1.15.0 [INFO] [stderr] Checking aho-corasick v1.1.3 [INFO] [stderr] Compiling libc v0.2.176 [INFO] [stderr] Checking lapack-sys v0.14.0 [INFO] [stderr] Compiling find-msvc-tools v0.1.2 [INFO] [stderr] Checking crossbeam-channel v0.5.15 [INFO] [stderr] Checking crossbeam-queue v0.3.12 [INFO] [stderr] Compiling scirs2-core v0.1.0-rc.1 [INFO] [stderr] Checking serde_json v1.0.145 [INFO] [stderr] Checking num_cpus v1.17.0 [INFO] [stderr] Compiling lambert_w v1.2.28 [INFO] [stderr] Compiling zstd-safe v7.2.4 [INFO] [stderr] Checking rand_core v0.9.3 [INFO] [stderr] Checking rand_core v0.6.4 [INFO] [stderr] Checking safe_arch v0.7.4 [INFO] [stderr] Checking inout v0.1.4 [INFO] [stderr] Checking rayon v1.11.0 [INFO] [stderr] Checking crc-catalog v2.4.0 [INFO] [stderr] Checking zlib-rs v0.5.2 [INFO] [stderr] Checking deranged v0.5.4 [INFO] [stderr] Checking cipher v0.4.4 [INFO] [stderr] Checking crc v3.3.0 [INFO] [stderr] Checking sha2 v0.10.9 [INFO] [stderr] Checking rand_chacha v0.3.1 [INFO] [stderr] Checking rand_chacha v0.9.0 [INFO] [stderr] Checking rand v0.8.5 [INFO] [stderr] Checking rand v0.9.2 [INFO] [stderr] Checking hmac v0.12.1 [INFO] [stderr] Checking libbz2-rs-sys v0.2.2 [INFO] [stderr] Checking crossbeam v0.8.4 [INFO] [stderr] Compiling semver v1.0.27 [INFO] [stderr] Checking wide v0.7.33 [INFO] [stderr] Checking unicode-ident v1.0.19 [INFO] [stderr] Checking bumpalo v3.19.0 [INFO] [stderr] Checking simd-adler32 v0.3.7 [INFO] [stderr] Checking indexmap v2.11.4 [INFO] [stderr] Compiling syn v2.0.106 [INFO] [stderr] Compiling jobserver v0.1.34 [INFO] [stderr] Checking bzip2 v0.6.0 [INFO] [stderr] Compiling syn v1.0.109 [INFO] [stderr] Checking zopfli v0.8.2 [INFO] [stderr] Checking lzma-rust2 v0.13.0 [INFO] [stderr] Compiling cc v1.2.39 [INFO] [stderr] Compiling rustc_version v0.4.1 [INFO] [stderr] Checking regex-automata v0.4.11 [INFO] [stderr] Checking pbkdf2 v0.12.2 [INFO] [stderr] Checking aes v0.8.4 [INFO] [stderr] Checking sha1 v0.10.6 [INFO] [stderr] Checking memmap2 v0.9.8 [INFO] [stderr] Checking csv-core v0.1.12 [INFO] [stderr] Checking iter-read v1.1.0 [INFO] [stderr] Checking num-integer v0.1.46 [INFO] [stderr] Checking approx v0.5.1 [INFO] [stderr] Checking rand_distr v0.5.1 [INFO] [stderr] Checking libz-rs-sys v0.5.2 [INFO] [stderr] Checking time v0.3.44 [INFO] [stderr] Checking deflate64 v0.1.9 [INFO] [stderr] Checking num-rational v0.4.2 [INFO] [stderr] Checking rand_distr v0.4.3 [INFO] [stderr] Checking num-bigint v0.4.6 [INFO] [stderr] Checking ppmd-rust v1.2.1 [INFO] [stderr] Compiling rustc_version_runtime v0.3.0 [INFO] [stderr] Checking flate2 v1.1.2 [INFO] [stderr] Checking rand_xoshiro v0.7.0 [INFO] [stderr] Compiling scirs2-neural v0.1.0-rc.1 [INFO] [stderr] Checking tempfile v3.23.0 [INFO] [stderr] Checking wait-timeout v0.2.1 [INFO] [stderr] Checking rand_xorshift v0.4.0 [INFO] [stderr] Checking itertools v0.12.1 [INFO] [stderr] Checking rusty-fork v0.3.0 [INFO] [stderr] Compiling zstd-sys v2.0.16+zstd.1.5.7 [INFO] [stderr] Checking proptest v1.8.0 [INFO] [stderr] Checking regex v1.11.3 [INFO] [stderr] Checking env_logger v0.8.4 [INFO] [stderr] Checking quickcheck v1.0.3 [INFO] [stderr] Compiling nalgebra-macros v0.1.0 [INFO] [stderr] Compiling serde_derive v1.0.228 [INFO] [stderr] Compiling thiserror-impl v2.0.17 [INFO] [stderr] Compiling katexit v0.1.5 [INFO] [stderr] Compiling zeroize_derive v1.4.2 [INFO] [stderr] Compiling thiserror-impl v1.0.69 [INFO] [stderr] Checking zeroize v1.8.2 [INFO] [stderr] Checking zstd v0.13.3 [INFO] [stderr] Checking zip v5.1.1 [INFO] [stderr] Checking thiserror v1.0.69 [INFO] [stderr] Checking thiserror v2.0.17 [INFO] [stderr] Checking serde v1.0.228 [INFO] [stderr] Checking num-complex v0.4.6 [INFO] [stderr] Checking chrono v0.4.42 [INFO] [stderr] Checking uuid v1.18.1 [INFO] [stderr] Checking bincode v2.0.1 [INFO] [stderr] Checking half v2.6.0 [INFO] [stderr] Checking csv v1.3.1 [INFO] [stderr] Checking serde-pickle v1.2.0 [INFO] [stderr] Checking ndarray v0.16.1 [INFO] [stderr] Checking cauchy v0.4.0 [INFO] [stderr] Checking simba v0.9.1 [INFO] [stderr] Checking simba v0.7.3 [INFO] [stderr] Checking argmin-math v0.5.1 [INFO] [stderr] Checking lax v0.17.0 [INFO] [stderr] Checking argmin v0.11.0 [INFO] [stderr] Checking special v0.11.4 [INFO] [stderr] Checking nalgebra v0.30.1 [INFO] [stderr] Checking ndarray-rand v0.15.0 [INFO] [stderr] Checking ndarray-linalg v0.17.0 [INFO] [stderr] Checking sprs v0.11.3 [INFO] [stderr] Checking nalgebra v0.33.2 [INFO] [stderr] Checking statrs v0.18.0 [INFO] [stderr] Checking friedrich v0.5.0 [INFO] [stderr] Checking scirs2-linalg v0.1.0-rc.1 [INFO] [stderr] Checking scirs2-sparse v0.1.0-rc.1 [INFO] [stderr] Checking scirs2-stats v0.1.0-rc.1 [INFO] [stderr] Checking scirs2-optimize v0.1.0-rc.1 [INFO] [stderr] Checking numrs2 v0.1.0-beta.3 [INFO] [stderr] Checking sklears-core v0.1.0-alpha.1 [INFO] [stderr] Checking sklears-utils v0.1.0-alpha.1 [INFO] [stderr] Checking sklears-impute v0.1.0-alpha.1 (/opt/rustwide/workdir) [INFO] [stdout] warning: unused doc comment [INFO] [stdout] --> src/mixed_type.rs:1129:21 [INFO] [stdout] | [INFO] [stdout] 1129 | /// X_imputed [INFO] [stdout] | ^^^^^^^^^^^^^ [INFO] [stdout] 1130 | X_imputed, [INFO] [stdout] | --------- rustdoc does not generate documentation for expressions [INFO] [stdout] | [INFO] [stdout] = help: use `//` for a plain comment [INFO] [stdout] = note: `#[warn(unused_doc_comments)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused doc comment [INFO] [stdout] --> src/mixed_type.rs:1129:21 [INFO] [stdout] | [INFO] [stdout] 1129 | /// X_imputed [INFO] [stdout] | ^^^^^^^^^^^^^ [INFO] [stdout] 1130 | X_imputed, [INFO] [stdout] | --------- rustdoc does not generate documentation for expressions [INFO] [stdout] | [INFO] [stdout] = help: use `//` for a plain comment [INFO] [stdout] = note: `#[warn(unused_doc_comments)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `rayon::prelude` [INFO] [stdout] --> src/sampling.rs:11:5 [INFO] [stdout] | [INFO] [stdout] 11 | use rayon::prelude::*; [INFO] [stdout] | ^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Rng` [INFO] [stdout] --> src/simple.rs:8:35 [INFO] [stdout] | [INFO] [stdout] 8 | use scirs2_core::random::{Random, Rng}; [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Estimator` [INFO] [stdout] --> src/fluent_api.rs:9:14 [INFO] [stdout] | [INFO] [stdout] 9 | traits::{Estimator, Fit, Transform}, [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Rng` [INFO] [stdout] --> src/independence.rs:1477:39 [INFO] [stdout] | [INFO] [stdout] 1477 | use scirs2_core::random::{Random, Rng}; [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `sklears_core::traits::Estimator` [INFO] [stdout] --> src/testing_pipeline.rs:17:5 [INFO] [stdout] | [INFO] [stdout] 17 | use sklears_core::traits::Estimator; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/approximate.rs:318:25 [INFO] [stdout] | [INFO] [stdout] 318 | .for_each(|(i, mut row)| { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/approximate.rs:302:14 [INFO] [stdout] | [INFO] [stdout] 302 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/approximate.rs:644:14 [INFO] [stdout] | [INFO] [stdout] 644 | for (i, (&x1, &x2)) in row1.iter().zip(row2.iter()).enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/approximate.rs:820:14 [INFO] [stdout] | [INFO] [stdout] 820 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/benchmarks.rs:119:35 [INFO] [stdout] | [INFO] [stdout] 119 | let mut rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/benchmarks.rs:149:35 [INFO] [stdout] | [INFO] [stdout] 149 | let mut rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/benchmarks.rs:175:35 [INFO] [stdout] | [INFO] [stdout] 175 | let mut rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/benchmarks.rs:233:35 [INFO] [stdout] | [INFO] [stdout] 233 | let mut rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/dimensionality/ica.rs:109:14 [INFO] [stdout] | [INFO] [stdout] 109 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `explained_variance` [INFO] [stdout] --> src/dimensionality/pca.rs:163:17 [INFO] [stdout] | [INFO] [stdout] 163 | let explained_variance = eigenvalues.slice(s![..self.n_components]).to_owned(); [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_explained_variance` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/dimensionality/sparse.rs:262:14 [INFO] [stdout] | [INFO] [stdout] 262 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/distributed.rs:431:14 [INFO] [stdout] | [INFO] [stdout] 431 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/distributed.rs:456:25 [INFO] [stdout] | [INFO] [stdout] 456 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `missing_values` [INFO] [stdout] --> src/distributed.rs:510:13 [INFO] [stdout] | [INFO] [stdout] 510 | let missing_values = self.missing_values; [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_missing_values` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `gene_var` [INFO] [stdout] --> src/domain_specific/bioinformatics.rs:202:21 [INFO] [stdout] | [INFO] [stdout] 202 | let gene_var = gene_values [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_gene_var` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/domain_specific/bioinformatics.rs:1043:14 [INFO] [stdout] | [INFO] [stdout] 1043 | let (n_samples, n_metabolites) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `q25` [INFO] [stdout] --> src/domain_specific/bioinformatics.rs:1122:17 [INFO] [stdout] | [INFO] [stdout] 1122 | let q25 = self.quantile(&sorted_values, 0.25); [INFO] [stdout] | ^^^ help: if this is intentional, prefix it with an underscore: `_q25` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/domain_specific/finance.rs:230:14 [INFO] [stdout] | [INFO] [stdout] 230 | for (i, &ret) in returns.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `returns` [INFO] [stdout] --> src/domain_specific/finance.rs:456:9 [INFO] [stdout] | [INFO] [stdout] 456 | returns: &[f64], [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_returns` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_assets` [INFO] [stdout] --> src/domain_specific/finance.rs:752:22 [INFO] [stdout] | [INFO] [stdout] 752 | let (n_time, n_assets) = X.dim(); [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_assets` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `cov_matrix` [INFO] [stdout] --> src/domain_specific/finance.rs:947:13 [INFO] [stdout] | [INFO] [stdout] 947 | let cov_matrix = centered_data.t().dot(¢ered_data) / (n_time - 1) as f64; [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_cov_matrix` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/domain_specific/finance.rs:1352:14 [INFO] [stdout] | [INFO] [stdout] 1352 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `response_patterns` [INFO] [stdout] --> src/domain_specific/social_science.rs:68:13 [INFO] [stdout] | [INFO] [stdout] 68 | let response_patterns = self.analyze_response_patterns(X)?; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_response_patterns` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_questions` [INFO] [stdout] --> src/domain_specific/social_science.rs:175:29 [INFO] [stdout] | [INFO] [stdout] 175 | let (n_respondents, n_questions) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_questions` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_questions` [INFO] [stdout] --> src/domain_specific/social_science.rs:306:29 [INFO] [stdout] | [INFO] [stdout] 306 | let (n_respondents, n_questions) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_questions` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `common_responses` is assigned to, but never used [INFO] [stdout] --> src/domain_specific/social_science.rs:334:13 [INFO] [stdout] | [INFO] [stdout] 334 | let mut common_responses = 0; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: consider using `_common_responses` instead [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: value assigned to `common_responses` is never read [INFO] [stdout] --> src/domain_specific/social_science.rs:341:17 [INFO] [stdout] | [INFO] [stdout] 341 | common_responses += 1; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = help: maybe it is overwritten before being read? [INFO] [stdout] = note: `#[warn(unused_assignments)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `stratum_name` [INFO] [stdout] --> src/domain_specific/social_science.rs:412:14 [INFO] [stdout] | [INFO] [stdout] 412 | for (stratum_name, stratum_indices) in &self.demographic_strata { [INFO] [stdout] | ^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_stratum_name` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `attrition_patterns` [INFO] [stdout] --> src/domain_specific/social_science.rs:857:13 [INFO] [stdout] | [INFO] [stdout] 857 | let attrition_patterns = self.identify_attrition_patterns(&X.view(), subject_groups)?; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_attrition_patterns` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_nodes` [INFO] [stdout] --> src/domain_specific/social_science.rs:1290:13 [INFO] [stdout] | [INFO] [stdout] 1290 | let n_nodes = X.nrows(); [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_nodes` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `stratum_name` [INFO] [stdout] --> src/domain_specific/social_science.rs:1472:14 [INFO] [stdout] | [INFO] [stdout] 1472 | for (stratum_name, individual_indices) in &self.population_strata { [INFO] [stdout] | ^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_stratum_name` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `benchmark_name` [INFO] [stdout] --> src/domain_specific/social_science.rs:1562:14 [INFO] [stdout] | [INFO] [stdout] 1562 | for (benchmark_name, target_value) in benchmarks { [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_benchmark_name` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/ensemble.rs:468:25 [INFO] [stdout] | [INFO] [stdout] 468 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `json` [INFO] [stdout] --> src/fluent_api.rs:905:22 [INFO] [stdout] | [INFO] [stdout] 905 | pub fn from_json(json: &str) -> SklResult { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_json` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/fluent_api.rs:1036:35 [INFO] [stdout] | [INFO] [stdout] 1036 | fn partial_fit(&mut self, X: &ArrayView2) -> SklResult<()> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Rng` [INFO] [stdout] --> src/simple.rs:8:35 [INFO] [stdout] | [INFO] [stdout] 8 | use scirs2_core::random::{Random, Rng}; [INFO] [stdout] | ^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Estimator` [INFO] [stdout] --> src/fluent_api.rs:9:14 [INFO] [stdout] | [INFO] [stdout] 9 | traits::{Estimator, Fit, Transform}, [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Rng` [INFO] [stdout] --> src/independence.rs:1477:39 [INFO] [stdout] | [INFO] [stdout] 1477 | use scirs2_core::random::{Random, Rng}; [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `rayon::prelude` [INFO] [stdout] --> src/sampling.rs:11:5 [INFO] [stdout] | [INFO] [stdout] 11 | use rayon::prelude::*; [INFO] [stdout] | ^^^^^^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `sklears_core::traits::Estimator` [INFO] [stdout] --> src/testing_pipeline.rs:17:5 [INFO] [stdout] | [INFO] [stdout] 17 | use sklears_core::traits::Estimator; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/approximate.rs:318:25 [INFO] [stdout] | [INFO] [stdout] 318 | .for_each(|(i, mut row)| { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/approximate.rs:302:14 [INFO] [stdout] | [INFO] [stdout] 302 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/independence.rs:1081:10 [INFO] [stdout] | [INFO] [stdout] 1081 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/independence.rs:1081:21 [INFO] [stdout] | [INFO] [stdout] 1081 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/approximate.rs:644:14 [INFO] [stdout] | [INFO] [stdout] 644 | for (i, (&x1, &x2)) in row1.iter().zip(row2.iter()).enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/approximate.rs:820:14 [INFO] [stdout] | [INFO] [stdout] 820 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `global_feat_idx` [INFO] [stdout] --> src/information_theoretic.rs:1552:21 [INFO] [stdout] | [INFO] [stdout] 1552 | for (feat_idx, &global_feat_idx) in feature_indices.iter().enumerate() { [INFO] [stdout] | ^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_global_feat_idx` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/benchmarks.rs:119:35 [INFO] [stdout] | [INFO] [stdout] 119 | let mut rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/benchmarks.rs:149:35 [INFO] [stdout] | [INFO] [stdout] 149 | let mut rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/benchmarks.rs:175:35 [INFO] [stdout] | [INFO] [stdout] 175 | let mut rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/benchmarks.rs:233:35 [INFO] [stdout] | [INFO] [stdout] 233 | let mut rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data_mcar` [INFO] [stdout] --> src/benchmarks.rs:917:14 [INFO] [stdout] | [INFO] [stdout] 917 | let (data_mcar, mask_mcar) = generator.introduce_missing(&data, &mcar_pattern).unwrap(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_data_mcar` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data_mar` [INFO] [stdout] --> src/benchmarks.rs:927:14 [INFO] [stdout] | [INFO] [stdout] 927 | let (data_mar, mask_mar) = generator.introduce_missing(&data, &mar_pattern).unwrap(); [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_data_mar` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data_block` [INFO] [stdout] --> src/benchmarks.rs:936:14 [INFO] [stdout] | [INFO] [stdout] 936 | let (data_block, mask_block) = generator.introduce_missing(&data, &block_pattern).unwrap(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_data_block` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/dimensionality/ica.rs:109:14 [INFO] [stdout] | [INFO] [stdout] 109 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `explained_variance` [INFO] [stdout] --> src/dimensionality/pca.rs:163:17 [INFO] [stdout] | [INFO] [stdout] 163 | let explained_variance = eigenvalues.slice(s![..self.n_components]).to_owned(); [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_explained_variance` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/dimensionality/sparse.rs:262:14 [INFO] [stdout] | [INFO] [stdout] 262 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/distributed.rs:431:14 [INFO] [stdout] | [INFO] [stdout] 431 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/distributed.rs:456:25 [INFO] [stdout] | [INFO] [stdout] 456 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `zero_probability` [INFO] [stdout] --> src/mixed_type.rs:379:44 [INFO] [stdout] | [INFO] [stdout] 379 | VariableType::SemiContinuous { zero_probability } => { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: try ignoring the field: `zero_probability: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `prev_X` [INFO] [stdout] --> src/mixed_type.rs:466:17 [INFO] [stdout] | [INFO] [stdout] 466 | let prev_X = X_imputed.clone(); [INFO] [stdout] | ^^^^^^ help: if this is intentional, prefix it with an underscore: `_prev_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `missing_values` [INFO] [stdout] --> src/distributed.rs:510:13 [INFO] [stdout] | [INFO] [stdout] 510 | let missing_values = self.missing_values; [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_missing_values` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/mixed_type.rs:982:40 [INFO] [stdout] | [INFO] [stdout] 982 | let mut base_rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `m` [INFO] [stdout] --> src/mixed_type.rs:988:13 [INFO] [stdout] | [INFO] [stdout] 988 | for m in 0..self.n_imputations { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_m` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/mixed_type.rs:1008:59 [INFO] [stdout] | [INFO] [stdout] 1008 | fn generate_single_imputation(&self, X: &Array2, seed: u64) -> SklResult> { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `gene_var` [INFO] [stdout] --> src/domain_specific/bioinformatics.rs:202:21 [INFO] [stdout] | [INFO] [stdout] 202 | let gene_var = gene_values [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_gene_var` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `M1` [INFO] [stdout] --> src/multivariate.rs:341:13 [INFO] [stdout] | [INFO] [stdout] 341 | let M1 = Cxx_inv.dot(Cxy).dot(&Cyy_inv).dot(&Cxy.t()); [INFO] [stdout] | ^^ help: if this is intentional, prefix it with an underscore: `_M1` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `M2` [INFO] [stdout] --> src/multivariate.rs:342:13 [INFO] [stdout] | [INFO] [stdout] 342 | let M2 = Cyy_inv.dot(&Cxy.t()).dot(&Cxx_inv).dot(Cxy); [INFO] [stdout] | ^^ help: if this is intentional, prefix it with an underscore: `_M2` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/domain_specific/bioinformatics.rs:1043:14 [INFO] [stdout] | [INFO] [stdout] 1043 | let (n_samples, n_metabolites) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `q25` [INFO] [stdout] --> src/domain_specific/bioinformatics.rs:1122:17 [INFO] [stdout] | [INFO] [stdout] 1122 | let q25 = self.quantile(&sorted_values, 0.25); [INFO] [stdout] | ^^^ help: if this is intentional, prefix it with an underscore: `_q25` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/out_of_core.rs:505:25 [INFO] [stdout] | [INFO] [stdout] 505 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/out_of_core.rs:515:19 [INFO] [stdout] | [INFO] [stdout] 515 | for ((i, j), value) in chunk.indexed_iter_mut() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/out_of_core.rs:527:14 [INFO] [stdout] | [INFO] [stdout] 527 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/out_of_core.rs:527:25 [INFO] [stdout] | [INFO] [stdout] 527 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/domain_specific/finance.rs:230:14 [INFO] [stdout] | [INFO] [stdout] 230 | for (i, &ret) in returns.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/out_of_core.rs:785:25 [INFO] [stdout] | [INFO] [stdout] 785 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `row_idx` [INFO] [stdout] --> src/out_of_core.rs:795:18 [INFO] [stdout] | [INFO] [stdout] 795 | for (row_idx, mut row) in chunk.rows_mut().into_iter().enumerate() { [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_row_idx` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/out_of_core.rs:822:14 [INFO] [stdout] | [INFO] [stdout] 822 | for (i, mut row) in X_imputed.rows_mut().into_iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `returns` [INFO] [stdout] --> src/domain_specific/finance.rs:456:9 [INFO] [stdout] | [INFO] [stdout] 456 | returns: &[f64], [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_returns` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `chunk_id` [INFO] [stdout] --> src/out_of_core.rs:1088:40 [INFO] [stdout] | [INFO] [stdout] 1088 | fn load_chunk_from_disk(&mut self, chunk_id: usize) -> Result<(), ImputationError> { [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_chunk_id` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `chunk` [INFO] [stdout] --> src/out_of_core.rs:1096:35 [INFO] [stdout] | [INFO] [stdout] 1096 | fn write_chunk_to_disk(&self, chunk: &OutOfCoreChunk) -> Result<(), ImputationError> { [INFO] [stdout] | ^^^^^ help: if this is intentional, prefix it with an underscore: `_chunk` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/parallel.rs:146:14 [INFO] [stdout] | [INFO] [stdout] 146 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_assets` [INFO] [stdout] --> src/domain_specific/finance.rs:752:22 [INFO] [stdout] | [INFO] [stdout] 752 | let (n_time, n_assets) = X.dim(); [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_assets` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `cov_matrix` [INFO] [stdout] --> src/domain_specific/finance.rs:947:13 [INFO] [stdout] | [INFO] [stdout] 947 | let cov_matrix = centered_data.t().dot(¢ered_data) / (n_time - 1) as f64; [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_cov_matrix` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/parallel.rs:416:14 [INFO] [stdout] | [INFO] [stdout] 416 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `iteration` [INFO] [stdout] --> src/parallel.rs:430:13 [INFO] [stdout] | [INFO] [stdout] 430 | for iteration in 0..self.max_iter { [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_iteration` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/parallel.rs:483:15 [INFO] [stdout] | [INFO] [stdout] 483 | for ((i, j), value) in X_imputed.indexed_iter_mut() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/domain_specific/finance.rs:1352:14 [INFO] [stdout] | [INFO] [stdout] 1352 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `response_patterns` [INFO] [stdout] --> src/domain_specific/social_science.rs:68:13 [INFO] [stdout] | [INFO] [stdout] 68 | let response_patterns = self.analyze_response_patterns(X)?; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_response_patterns` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_questions` [INFO] [stdout] --> src/domain_specific/social_science.rs:175:29 [INFO] [stdout] | [INFO] [stdout] 175 | let (n_respondents, n_questions) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_questions` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_questions` [INFO] [stdout] --> src/domain_specific/social_science.rs:306:29 [INFO] [stdout] | [INFO] [stdout] 306 | let (n_respondents, n_questions) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_questions` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable `common_responses` is assigned to, but never used [INFO] [stdout] --> src/domain_specific/social_science.rs:334:13 [INFO] [stdout] | [INFO] [stdout] 334 | let mut common_responses = 0; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: consider using `_common_responses` instead [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: value assigned to `common_responses` is never read [INFO] [stdout] --> src/domain_specific/social_science.rs:341:17 [INFO] [stdout] | [INFO] [stdout] 341 | common_responses += 1; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = help: maybe it is overwritten before being read? [INFO] [stdout] = note: `#[warn(unused_assignments)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `stratum_name` [INFO] [stdout] --> src/domain_specific/social_science.rs:412:14 [INFO] [stdout] | [INFO] [stdout] 412 | for (stratum_name, stratum_indices) in &self.demographic_strata { [INFO] [stdout] | ^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_stratum_name` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `attrition_patterns` [INFO] [stdout] --> src/domain_specific/social_science.rs:857:13 [INFO] [stdout] | [INFO] [stdout] 857 | let attrition_patterns = self.identify_attrition_patterns(&X.view(), subject_groups)?; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_attrition_patterns` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_nodes` [INFO] [stdout] --> src/domain_specific/social_science.rs:1290:13 [INFO] [stdout] | [INFO] [stdout] 1290 | let n_nodes = X.nrows(); [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_nodes` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `stratum_name` [INFO] [stdout] --> src/domain_specific/social_science.rs:1472:14 [INFO] [stdout] | [INFO] [stdout] 1472 | for (stratum_name, individual_indices) in &self.population_strata { [INFO] [stdout] | ^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_stratum_name` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `benchmark_name` [INFO] [stdout] --> src/domain_specific/social_science.rs:1562:14 [INFO] [stdout] | [INFO] [stdout] 1562 | for (benchmark_name, target_value) in benchmarks { [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_benchmark_name` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/sampling.rs:307:14 [INFO] [stdout] | [INFO] [stdout] 307 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/ensemble.rs:468:25 [INFO] [stdout] | [INFO] [stdout] 468 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/sampling.rs:763:14 [INFO] [stdout] | [INFO] [stdout] 763 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `json` [INFO] [stdout] --> src/fluent_api.rs:905:22 [INFO] [stdout] | [INFO] [stdout] 905 | pub fn from_json(json: &str) -> SklResult { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_json` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X` [INFO] [stdout] --> src/fluent_api.rs:1036:35 [INFO] [stdout] | [INFO] [stdout] 1036 | fn partial_fit(&mut self, X: &ArrayView2) -> SklResult<()> { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/simd_ops.rs:637:14 [INFO] [stdout] | [INFO] [stdout] 637 | let (n_samples, n_features) = data.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/independence.rs:1081:10 [INFO] [stdout] | [INFO] [stdout] 1081 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/independence.rs:1081:21 [INFO] [stdout] | [INFO] [stdout] 1081 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `global_feat_idx` [INFO] [stdout] --> src/information_theoretic.rs:1552:21 [INFO] [stdout] | [INFO] [stdout] 1552 | for (feat_idx, &global_feat_idx) in feature_indices.iter().enumerate() { [INFO] [stdout] | ^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_global_feat_idx` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `zero_probability` [INFO] [stdout] --> src/mixed_type.rs:379:44 [INFO] [stdout] | [INFO] [stdout] 379 | VariableType::SemiContinuous { zero_probability } => { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: try ignoring the field: `zero_probability: _` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `prev_X` [INFO] [stdout] --> src/mixed_type.rs:466:17 [INFO] [stdout] | [INFO] [stdout] 466 | let prev_X = X_imputed.clone(); [INFO] [stdout] | ^^^^^^ help: if this is intentional, prefix it with an underscore: `_prev_X` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/mixed_type.rs:982:40 [INFO] [stdout] | [INFO] [stdout] 982 | let mut base_rng = if let Some(seed) = self.random_state { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `m` [INFO] [stdout] --> src/mixed_type.rs:988:13 [INFO] [stdout] | [INFO] [stdout] 988 | for m in 0..self.n_imputations { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_m` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/mixed_type.rs:1008:59 [INFO] [stdout] | [INFO] [stdout] 1008 | fn generate_single_imputation(&self, X: &Array2, seed: u64) -> SklResult> { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `imputer` [INFO] [stdout] --> src/testing_pipeline.rs:797:9 [INFO] [stdout] | [INFO] [stdout] 797 | imputer: &mut dyn Imputer, [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_imputer` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X_missing` [INFO] [stdout] --> src/testing_pipeline.rs:798:9 [INFO] [stdout] | [INFO] [stdout] 798 | X_missing: &Array2, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_X_missing` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `M1` [INFO] [stdout] --> src/multivariate.rs:341:13 [INFO] [stdout] | [INFO] [stdout] 341 | let M1 = Cxx_inv.dot(Cxy).dot(&Cyy_inv).dot(&Cxy.t()); [INFO] [stdout] | ^^ help: if this is intentional, prefix it with an underscore: `_M1` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `M2` [INFO] [stdout] --> src/multivariate.rs:342:13 [INFO] [stdout] | [INFO] [stdout] 342 | let M2 = Cyy_inv.dot(&Cxy.t()).dot(&Cxx_inv).dot(Cxy); [INFO] [stdout] | ^^ help: if this is intentional, prefix it with an underscore: `_M2` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/out_of_core.rs:505:25 [INFO] [stdout] | [INFO] [stdout] 505 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/out_of_core.rs:515:19 [INFO] [stdout] | [INFO] [stdout] 515 | for ((i, j), value) in chunk.indexed_iter_mut() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/out_of_core.rs:527:14 [INFO] [stdout] | [INFO] [stdout] 527 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/out_of_core.rs:527:25 [INFO] [stdout] | [INFO] [stdout] 527 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> src/out_of_core.rs:785:25 [INFO] [stdout] | [INFO] [stdout] 785 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n` [INFO] [stdout] --> src/validation.rs:716:13 [INFO] [stdout] | [INFO] [stdout] 716 | let n = fold_metrics.len() as f64; [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_n` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `row_idx` [INFO] [stdout] --> src/out_of_core.rs:795:18 [INFO] [stdout] | [INFO] [stdout] 795 | for (row_idx, mut row) in chunk.rows_mut().into_iter().enumerate() { [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_row_idx` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/out_of_core.rs:822:14 [INFO] [stdout] | [INFO] [stdout] 822 | for (i, mut row) in X_imputed.rows_mut().into_iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `chunk_id` [INFO] [stdout] --> src/out_of_core.rs:1088:40 [INFO] [stdout] | [INFO] [stdout] 1088 | fn load_chunk_from_disk(&mut self, chunk_id: usize) -> Result<(), ImputationError> { [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_chunk_id` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `chunk` [INFO] [stdout] --> src/out_of_core.rs:1096:35 [INFO] [stdout] | [INFO] [stdout] 1096 | fn write_chunk_to_disk(&self, chunk: &OutOfCoreChunk) -> Result<(), ImputationError> { [INFO] [stdout] | ^^^^^ help: if this is intentional, prefix it with an underscore: `_chunk` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/parallel.rs:146:14 [INFO] [stdout] | [INFO] [stdout] 146 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `y` [INFO] [stdout] --> src/visualization.rs:557:49 [INFO] [stdout] | [INFO] [stdout] 557 | fn compute_correlation_p_value(x: &Array1, y: &Array1, correlation: f64) -> f64 { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_y` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `df` [INFO] [stdout] --> src/visualization.rs:574:9 [INFO] [stdout] | [INFO] [stdout] 574 | let df = n - 2.0; [INFO] [stdout] | ^^ help: if this is intentional, prefix it with an underscore: `_df` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/parallel.rs:416:14 [INFO] [stdout] | [INFO] [stdout] 416 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `iteration` [INFO] [stdout] --> src/parallel.rs:430:13 [INFO] [stdout] | [INFO] [stdout] 430 | for iteration in 0..self.max_iter { [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_iteration` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> src/parallel.rs:483:15 [INFO] [stdout] | [INFO] [stdout] 483 | for ((i, j), value) in X_imputed.indexed_iter_mut() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/sampling.rs:307:14 [INFO] [stdout] | [INFO] [stdout] 307 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/sampling.rs:763:14 [INFO] [stdout] | [INFO] [stdout] 763 | let (n_samples, n_features) = X.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_samples` [INFO] [stdout] --> src/simd_ops.rs:637:14 [INFO] [stdout] | [INFO] [stdout] 637 | let (n_samples, n_features) = data.dim(); [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_samples` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variant `pH` should have an upper camel case name [INFO] [stdout] --> examples/sensor_data_imputation.rs:217:5 [INFO] [stdout] | [INFO] [stdout] 217 | pH, [INFO] [stdout] | ^^ help: convert the identifier to upper camel case: `PH` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(non_camel_case_types)]` (part of `#[warn(nonstandard_style)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: use of deprecated method `scirs2_core::Rng::gen`: Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024. [INFO] [stdout] --> examples/healthcare_imputation.rs:1518:31 [INFO] [stdout] | [INFO] [stdout] 1518 | data[[i, 1]] = if rng.gen::() < 0.5 { 0.0 } else { 1.0 }; // Gender (0=F, 1=M) [INFO] [stdout] | ^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(deprecated)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: use of deprecated method `scirs2_core::Rng::gen`: Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024. [INFO] [stdout] --> examples/healthcare_imputation.rs:1521:16 [INFO] [stdout] | [INFO] [stdout] 1521 | if rng.gen::() > 0.05 { [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: use of deprecated method `scirs2_core::Rng::gen`: Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024. [INFO] [stdout] --> examples/healthcare_imputation.rs:1534:16 [INFO] [stdout] | [INFO] [stdout] 1534 | if rng.gen::() > missing_prob { [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: use of deprecated method `scirs2_core::Rng::gen`: Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024. [INFO] [stdout] --> examples/healthcare_imputation.rs:1550:16 [INFO] [stdout] | [INFO] [stdout] 1550 | if rng.gen::() > dropout_prob { [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: use of deprecated method `scirs2_core::Rng::gen`: Renamed to `random` to avoid conflict with the new `gen` keyword in Rust 2024. [INFO] [stdout] --> examples/healthcare_imputation.rs:1552:35 [INFO] [stdout] | [INFO] [stdout] 1552 | data[[i, 9]] = if rng.gen::() < 0.1 { 1.0 } else { 0.0 }; // Adverse event [INFO] [stdout] | ^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/healthcare_imputation.rs:501:32 [INFO] [stdout] | [INFO] [stdout] 501 | fn little_mcar_test(&self, data: &ArrayView2) -> SklResult { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/healthcare_imputation.rs:510:9 [INFO] [stdout] | [INFO] [stdout] 510 | data: &ArrayView2, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `variable_names` [INFO] [stdout] --> examples/healthcare_imputation.rs:511:9 [INFO] [stdout] | [INFO] [stdout] 511 | variable_names: &[String], [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_variable_names` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `clinical_context` [INFO] [stdout] --> examples/healthcare_imputation.rs:522:9 [INFO] [stdout] | [INFO] [stdout] 522 | clinical_context: &ClinicalContext, [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_clinical_context` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `patterns` [INFO] [stdout] --> examples/healthcare_imputation.rs:537:38 [INFO] [stdout] | [INFO] [stdout] 537 | fn check_monotone_pattern(&self, patterns: &[Vec]) -> bool { [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_patterns` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/healthcare_imputation.rs:546:9 [INFO] [stdout] | [INFO] [stdout] 546 | data: &ArrayView2, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> examples/healthcare_imputation.rs:553:14 [INFO] [stdout] | [INFO] [stdout] 553 | for (i, var_name) in variable_names.iter().enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `clinical_context` [INFO] [stdout] --> examples/healthcare_imputation.rs:563:54 [INFO] [stdout] | [INFO] [stdout] 563 | fn is_informative_missing(&self, var_name: &str, clinical_context: &ClinicalContext) -> bool { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_clinical_context` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `variable_names` [INFO] [stdout] --> examples/healthcare_imputation.rs:650:9 [INFO] [stdout] | [INFO] [stdout] 650 | variable_names: &[String], [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_variable_names` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `clinical_context` [INFO] [stdout] --> examples/healthcare_imputation.rs:651:9 [INFO] [stdout] | [INFO] [stdout] 651 | clinical_context: &ClinicalContext, [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_clinical_context` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `use_expert_rules` [INFO] [stdout] --> examples/healthcare_imputation.rs:714:9 [INFO] [stdout] | [INFO] [stdout] 714 | use_expert_rules: bool, [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_use_expert_rules` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `similarity_metric` [INFO] [stdout] --> examples/healthcare_imputation.rs:759:9 [INFO] [stdout] | [INFO] [stdout] 759 | similarity_metric: &SimilarityMetric, [INFO] [stdout] | ^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_similarity_metric` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> examples/healthcare_imputation.rs:805:25 [INFO] [stdout] | [INFO] [stdout] 805 | let (n_samples, n_features) = data.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Rng` [INFO] [stdout] --> examples/sensor_data_imputation.rs:44:39 [INFO] [stdout] | [INFO] [stdout] 44 | use scirs2_core::random::{thread_rng, Rng}; [INFO] [stdout] | ^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `time_windows` [INFO] [stdout] --> examples/healthcare_imputation.rs:849:9 [INFO] [stdout] | [INFO] [stdout] 849 | time_windows: &[f64], [INFO] [stdout] | ^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_time_windows` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Rng` [INFO] [stdout] --> examples/simple_financial_imputation.rs:12:39 [INFO] [stdout] | [INFO] [stdout] 12 | use scirs2_core::random::{thread_rng, Rng}; [INFO] [stdout] | ^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_imputations` [INFO] [stdout] --> examples/healthcare_imputation.rs:1022:13 [INFO] [stdout] | [INFO] [stdout] 1022 | let n_imputations = all_imputations.len(); [INFO] [stdout] | ^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_imputations` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `clinical_context` [INFO] [stdout] --> examples/healthcare_imputation.rs:1080:9 [INFO] [stdout] | [INFO] [stdout] 1080 | clinical_context: &ClinicalContext, [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_clinical_context` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n_features` [INFO] [stdout] --> examples/healthcare_imputation.rs:1082:25 [INFO] [stdout] | [INFO] [stdout] 1082 | let (n_samples, n_features) = imputed_data.dim(); [INFO] [stdout] | ^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_n_features` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `imputed_data` [INFO] [stdout] --> examples/healthcare_imputation.rs:1141:9 [INFO] [stdout] | [INFO] [stdout] 1141 | imputed_data: &Array2, [INFO] [stdout] | ^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_imputed_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `variable_names` [INFO] [stdout] --> examples/healthcare_imputation.rs:1142:9 [INFO] [stdout] | [INFO] [stdout] 1142 | variable_names: &[String], [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_variable_names` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `original_data` [INFO] [stdout] --> examples/healthcare_imputation.rs:1242:9 [INFO] [stdout] | [INFO] [stdout] 1242 | original_data: &ArrayView2, [INFO] [stdout] | ^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_original_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `variable_names` [INFO] [stdout] --> examples/healthcare_imputation.rs:1244:9 [INFO] [stdout] | [INFO] [stdout] 1244 | variable_names: &[String], [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_variable_names` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `clinical_context` [INFO] [stdout] --> examples/healthcare_imputation.rs:1245:9 [INFO] [stdout] | [INFO] [stdout] 1245 | clinical_context: &ClinicalContext, [INFO] [stdout] | ^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_clinical_context` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Rng` [INFO] [stdout] --> examples/simple_sensor_imputation.rs:12:39 [INFO] [stdout] | [INFO] [stdout] 12 | use scirs2_core::random::{thread_rng, Rng}; [INFO] [stdout] | ^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `imputer` [INFO] [stdout] --> src/testing_pipeline.rs:797:9 [INFO] [stdout] | [INFO] [stdout] 797 | imputer: &mut dyn Imputer, [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_imputer` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `variable_names` [INFO] [stdout] --> examples/healthcare_imputation.rs:1626:16 [INFO] [stdout] | [INFO] [stdout] 1626 | let (data, variable_names, clinical_context) = create_synthetic_healthcare_data()?; [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_variable_names` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `X_missing` [INFO] [stdout] --> src/testing_pipeline.rs:798:9 [INFO] [stdout] | [INFO] [stdout] 798 | X_missing: &Array2, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_X_missing` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: field `demographic_strata` is never read [INFO] [stdout] --> examples/healthcare_imputation.rs:32:5 [INFO] [stdout] | [INFO] [stdout] 30 | pub struct HealthcareImputationFramework { [INFO] [stdout] | ----------------------------- field in this struct [INFO] [stdout] 31 | /// Patient demographic stratification for targeted imputation [INFO] [stdout] 32 | demographic_strata: HashMap>, [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `HealthcareImputationFramework` has derived impls for the traits `Clone` and `Debug`, but these are intentionally ignored during dead code analysis [INFO] [stdout] = note: `#[warn(dead_code)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: fields `lab_reference_ranges`, `drug_interactions`, and `temporal_constraints` are never read [INFO] [stdout] --> examples/healthcare_imputation.rs:47:5 [INFO] [stdout] | [INFO] [stdout] 43 | pub struct ClinicalConstraints { [INFO] [stdout] | ------------------- fields in this struct [INFO] [stdout] ... [INFO] [stdout] 47 | lab_reference_ranges: HashMap>, [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] 48 | /// Medication interaction constraints [INFO] [stdout] 49 | drug_interactions: Vec, [INFO] [stdout] | ^^^^^^^^^^^^^^^^^ [INFO] [stdout] 50 | /// Temporal constraints (e.g., before/after treatment) [INFO] [stdout] 51 | temporal_constraints: Vec, [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `ClinicalConstraints` has derived impls for the traits `Clone` and `Debug`, but these are intentionally ignored during dead code analysis [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> examples/simple_sensor_imputation.rs:214:10 [INFO] [stdout] | [INFO] [stdout] 214 | for (i, &(row, col)) in missing_positions.iter().take(5).enumerate() { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `sensor_type` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1139:14 [INFO] [stdout] | [INFO] [stdout] 1139 | for (sensor_type, sensor_indices) in sensor_groups { [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_sensor_type` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1236:9 [INFO] [stdout] | [INFO] [stdout] 1236 | data: &SensorDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1244:9 [INFO] [stdout] | [INFO] [stdout] 1244 | data: &SensorDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1435:9 [INFO] [stdout] | [INFO] [stdout] 1435 | data: &SensorDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1472:9 [INFO] [stdout] | [INFO] [stdout] 1472 | data: &SensorDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1490:9 [INFO] [stdout] | [INFO] [stdout] 1490 | data: &SensorDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `autonomous_framework` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1788:9 [INFO] [stdout] | [INFO] [stdout] 1788 | let autonomous_framework = SensorImputationFramework::new().for_autonomous_vehicles(); [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_autonomous_framework` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1871:61 [INFO] [stdout] | [INFO] [stdout] 1871 | let locations = Array2::from_shape_fn((n_sensors, 3), |(i, j)| { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `sensor_type` [INFO] [stdout] --> examples/sensor_data_imputation.rs:1890:13 [INFO] [stdout] | [INFO] [stdout] 1890 | let sensor_type = &sensor_specs[s].sensor_type; [INFO] [stdout] | ^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_sensor_type` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: field `environmental_config` is never read [INFO] [stdout] --> examples/sensor_data_imputation.rs:60:5 [INFO] [stdout] | [INFO] [stdout] 54 | pub struct SensorImputationFramework { [INFO] [stdout] | ------------------------- field in this struct [INFO] [stdout] ... [INFO] [stdout] 60 | environmental_config: EnvironmentalConfig, [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `n` [INFO] [stdout] --> src/validation.rs:716:13 [INFO] [stdout] | [INFO] [stdout] 716 | let n = fold_metrics.len() as f64; [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_n` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `y` [INFO] [stdout] --> src/visualization.rs:557:49 [INFO] [stdout] | [INFO] [stdout] 557 | fn compute_correlation_p_value(x: &Array1, y: &Array1, correlation: f64) -> f64 { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_y` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `df` [INFO] [stdout] --> src/visualization.rs:574:9 [INFO] [stdout] | [INFO] [stdout] 574 | let df = n - 2.0; [INFO] [stdout] | ^^ help: if this is intentional, prefix it with an underscore: `_df` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `max_iterations` [INFO] [stdout] --> src/tests.rs:563:17 [INFO] [stdout] | [INFO] [stdout] 563 | let max_iterations = [10, 25, 50, 100]; [INFO] [stdout] | ^^^^^^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_max_iterations` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `Rng` [INFO] [stdout] --> examples/financial_imputation.rs:38:39 [INFO] [stdout] | [INFO] [stdout] 38 | use scirs2_core::random::{thread_rng, Rng}; [INFO] [stdout] | ^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `max_iter` [INFO] [stdout] --> src/tests.rs:635:18 [INFO] [stdout] | [INFO] [stdout] 635 | for &max_iter in &iteration_counts { [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_max_iter` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/tests.rs:1041:73 [INFO] [stdout] | [INFO] [stdout] 1041 | fn generate_synthetic_data(n_samples: usize, n_features: usize, seed: u64) -> Array2 { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/tests.rs:1068:13 [INFO] [stdout] | [INFO] [stdout] 1068 | seed: u64, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `seed` [INFO] [stdout] --> src/tests.rs:1103:13 [INFO] [stdout] | [INFO] [stdout] 1103 | seed: u64, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_seed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:709:9 [INFO] [stdout] | [INFO] [stdout] 709 | data: &FinancialDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1048:9 [INFO] [stdout] | [INFO] [stdout] 1048 | data: &FinancialDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1056:9 [INFO] [stdout] | [INFO] [stdout] 1056 | data: &FinancialDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1190:9 [INFO] [stdout] | [INFO] [stdout] 1190 | data: &FinancialDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1203:9 [INFO] [stdout] | [INFO] [stdout] 1203 | data: &FinancialDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1216:9 [INFO] [stdout] | [INFO] [stdout] 1216 | data: &FinancialDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1229:9 [INFO] [stdout] | [INFO] [stdout] 1229 | data: &FinancialDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1247:42 [INFO] [stdout] | [INFO] [stdout] 1247 | fn check_basel_iii_compliance(&self, data: &FinancialDataset) -> Result { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1251:41 [INFO] [stdout] | [INFO] [stdout] 1251 | fn check_mifid_ii_compliance(&self, data: &FinancialDataset) -> Result { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1257:9 [INFO] [stdout] | [INFO] [stdout] 1257 | data: &FinancialDataset, [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `data` [INFO] [stdout] --> examples/financial_imputation.rs:1262:37 [INFO] [stdout] | [INFO] [stdout] 1262 | fn check_ccar_compliance(&self, data: &FinancialDataset) -> Result { [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_data` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `original` [INFO] [stdout] --> examples/financial_imputation.rs:1268:9 [INFO] [stdout] | [INFO] [stdout] 1268 | original: &FinancialDataset, [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_original` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `imputed` [INFO] [stdout] --> examples/financial_imputation.rs:1269:9 [INFO] [stdout] | [INFO] [stdout] 1269 | imputed: &FinancialDataset, [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_imputed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `original` [INFO] [stdout] --> examples/financial_imputation.rs:1277:9 [INFO] [stdout] | [INFO] [stdout] 1277 | original: &FinancialDataset, [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_original` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `imputed` [INFO] [stdout] --> examples/financial_imputation.rs:1278:9 [INFO] [stdout] | [INFO] [stdout] 1278 | imputed: &FinancialDataset, [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_imputed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `original` [INFO] [stdout] --> examples/financial_imputation.rs:1286:9 [INFO] [stdout] | [INFO] [stdout] 1286 | original: &FinancialDataset, [INFO] [stdout] | ^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_original` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `imputed` [INFO] [stdout] --> examples/financial_imputation.rs:1287:9 [INFO] [stdout] | [INFO] [stdout] 1287 | imputed: &FinancialDataset, [INFO] [stdout] | ^^^^^^^ help: if this is intentional, prefix it with an underscore: `_imputed` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `i` [INFO] [stdout] --> examples/financial_imputation.rs:1605:13 [INFO] [stdout] | [INFO] [stdout] 1605 | for i in 0..affected_assets { [INFO] [stdout] | ^ help: if this is intentional, prefix it with an underscore: `_i` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `framework` [INFO] [stdout] --> examples/financial_imputation.rs:1794:5 [INFO] [stdout] | [INFO] [stdout] 1794 | framework: &FinancialImputationFramework, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_framework` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `framework` [INFO] [stdout] --> examples/financial_imputation.rs:1807:5 [INFO] [stdout] | [INFO] [stdout] 1807 | framework: &FinancialImputationFramework, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_framework` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `framework` [INFO] [stdout] --> examples/financial_imputation.rs:1820:5 [INFO] [stdout] | [INFO] [stdout] 1820 | framework: &FinancialImputationFramework, [INFO] [stdout] | ^^^^^^^^^ help: if this is intentional, prefix it with an underscore: `_framework` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: fields `economic_config` and `credit_config` are never read [INFO] [stdout] --> examples/financial_imputation.rs:56:5 [INFO] [stdout] | [INFO] [stdout] 50 | pub struct FinancialImputationFramework { [INFO] [stdout] | ---------------------------- fields in this struct [INFO] [stdout] ... [INFO] [stdout] 56 | economic_config: EconomicConfig, [INFO] [stdout] | ^^^^^^^^^^^^^^^ [INFO] [stdout] 57 | /// Credit risk imputation parameters [INFO] [stdout] 58 | credit_config: CreditConfig, [INFO] [stdout] | ^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `dev` profile [unoptimized + debuginfo] target(s) in 2m 31s [INFO] running `Command { std: "docker" "inspect" "a97f5ad71eb8719dc1c9ceb197695906a90c3311657d8b9316686e91bbd69d8f", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "a97f5ad71eb8719dc1c9ceb197695906a90c3311657d8b9316686e91bbd69d8f", kill_on_drop: false }` [INFO] [stdout] a97f5ad71eb8719dc1c9ceb197695906a90c3311657d8b9316686e91bbd69d8f