[INFO] fetching crate easynn 0.1.7-beta... [INFO] testing easynn-0.1.7-beta against master#cdb45c87e2cd43495379f7e867e3cc15dcee9f93 for pr-145838-1 [INFO] extracting crate easynn 0.1.7-beta into /workspace/builds/worker-1-tc1/source [INFO] started tweaking crates.io crate easynn 0.1.7-beta [INFO] finished tweaking crates.io crate easynn 0.1.7-beta [INFO] tweaked toml for crates.io crate easynn 0.1.7-beta written to /workspace/builds/worker-1-tc1/source/Cargo.toml [INFO] validating manifest of crates.io crate easynn 0.1.7-beta on toolchain cdb45c87e2cd43495379f7e867e3cc15dcee9f93 [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+cdb45c87e2cd43495379f7e867e3cc15dcee9f93" "metadata" "--manifest-path" "Cargo.toml" "--no-deps", kill_on_drop: false }` [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+cdb45c87e2cd43495379f7e867e3cc15dcee9f93" "generate-lockfile" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] [stderr] Updating crates.io index [INFO] [stderr] Locking 28 packages to latest compatible versions [INFO] [stderr] Adding itertools v0.10.5 (available: v0.14.0) [INFO] [stderr] Adding rand v0.8.5 (available: v0.9.2) [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+cdb45c87e2cd43495379f7e867e3cc15dcee9f93" "fetch" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-1-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-1-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:7ad1b28ee6f5f7f699f6cf7015098d6ccdd96d6f2d78dd06228f5b4c9faf309c" "/opt/rustwide/cargo-home/bin/cargo" "+cdb45c87e2cd43495379f7e867e3cc15dcee9f93" "metadata" "--no-deps" "--format-version=1", kill_on_drop: false }` [INFO] [stdout] 64a92dcc44dbcf814679d29b896d8183a2c4a0ea9471cbf4d809902756389097 [INFO] running `Command { std: "docker" "start" "-a" "64a92dcc44dbcf814679d29b896d8183a2c4a0ea9471cbf4d809902756389097", kill_on_drop: false }` [INFO] running `Command { std: "docker" "inspect" "64a92dcc44dbcf814679d29b896d8183a2c4a0ea9471cbf4d809902756389097", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "64a92dcc44dbcf814679d29b896d8183a2c4a0ea9471cbf4d809902756389097", kill_on_drop: false }` [INFO] [stdout] 64a92dcc44dbcf814679d29b896d8183a2c4a0ea9471cbf4d809902756389097 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-1-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-1-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:7ad1b28ee6f5f7f699f6cf7015098d6ccdd96d6f2d78dd06228f5b4c9faf309c" "/opt/rustwide/cargo-home/bin/cargo" "+cdb45c87e2cd43495379f7e867e3cc15dcee9f93" "build" "--frozen" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] ce820a67f774517433c99e9f5ed6868cd1451ab9ca90514cd227e542998436aa [INFO] running `Command { std: "docker" "start" "-a" "ce820a67f774517433c99e9f5ed6868cd1451ab9ca90514cd227e542998436aa", kill_on_drop: false }` [INFO] [stderr] Compiling rayon-core v1.13.0 [INFO] [stderr] Compiling crossbeam-queue v0.3.12 [INFO] [stderr] Compiling crossbeam-channel v0.5.15 [INFO] [stderr] Compiling itertools v0.10.5 [INFO] [stderr] Compiling rand v0.8.5 [INFO] [stderr] Compiling crossbeam v0.8.4 [INFO] [stderr] Compiling rayon v1.11.0 [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `dev` profile [unoptimized + debuginfo] target(s) in 5.06s [INFO] running `Command { std: "docker" "inspect" "ce820a67f774517433c99e9f5ed6868cd1451ab9ca90514cd227e542998436aa", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "ce820a67f774517433c99e9f5ed6868cd1451ab9ca90514cd227e542998436aa", kill_on_drop: false }` [INFO] [stdout] ce820a67f774517433c99e9f5ed6868cd1451ab9ca90514cd227e542998436aa [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-1-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-1-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:7ad1b28ee6f5f7f699f6cf7015098d6ccdd96d6f2d78dd06228f5b4c9faf309c" "/opt/rustwide/cargo-home/bin/cargo" "+cdb45c87e2cd43495379f7e867e3cc15dcee9f93" "test" "--frozen" "--no-run" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] 59c11f5e3f8edbbb1048ba19acd41487ad2231adbe7be98c4051c05c7ab8ad5c [INFO] running `Command { std: "docker" "start" "-a" "59c11f5e3f8edbbb1048ba19acd41487ad2231adbe7be98c4051c05c7ab8ad5c", kill_on_drop: false }` [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stdout] --> src/models/sequential.rs:180:9 [INFO] [stdout] | [INFO] [stdout] 180 | use crate::layers::activation::Activation::*; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `rand::Rng` [INFO] [stdout] --> src/models/sequential.rs:207:9 [INFO] [stdout] | [INFO] [stdout] 207 | use rand::Rng; [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` (part of `#[warn(unused)]`) on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `test` profile [unoptimized + debuginfo] target(s) in 1.54s [INFO] running `Command { std: "docker" "inspect" "59c11f5e3f8edbbb1048ba19acd41487ad2231adbe7be98c4051c05c7ab8ad5c", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "59c11f5e3f8edbbb1048ba19acd41487ad2231adbe7be98c4051c05c7ab8ad5c", kill_on_drop: false }` [INFO] [stdout] 59c11f5e3f8edbbb1048ba19acd41487ad2231adbe7be98c4051c05c7ab8ad5c [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-1-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-1-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:7ad1b28ee6f5f7f699f6cf7015098d6ccdd96d6f2d78dd06228f5b4c9faf309c" "/opt/rustwide/cargo-home/bin/cargo" "+cdb45c87e2cd43495379f7e867e3cc15dcee9f93" "test" "--frozen", kill_on_drop: false }` [INFO] [stdout] 9057c4c09128ff001bf91f81bd71a0b0ee04e8c0445bbf9da09c75d054fc1fdc [INFO] running `Command { std: "docker" "start" "-a" "9057c4c09128ff001bf91f81bd71a0b0ee04e8c0445bbf9da09c75d054fc1fdc", kill_on_drop: false }` [INFO] [stderr] warning: unused variable: `olen` [INFO] [stderr] --> src/layers/dense.rs:96:13 [INFO] [stderr] | [INFO] [stderr] 96 | let olen = output.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_variables)]` (part of `#[warn(unused)]`) on by default [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:148:13 [INFO] [stderr] | [INFO] [stderr] 148 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:205:13 [INFO] [stderr] | [INFO] [stderr] 205 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:137:17 [INFO] [stderr] | [INFO] [stderr] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_mut)]` (part of `#[warn(unused)]`) on by default [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:146:17 [INFO] [stderr] | [INFO] [stderr] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] [INFO] [stderr] warning: function `determine_thread` is never used [INFO] [stderr] --> src/layers/dense.rs:18:4 [INFO] [stderr] | [INFO] [stderr] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stderr] | ^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(dead_code)]` (part of `#[warn(unused)]`) on by default [INFO] [stderr] [INFO] [stderr] warning: method `pos2index` is never used [INFO] [stderr] --> src/tensor/mod.rs:38:19 [INFO] [stderr] | [INFO] [stderr] 26 | impl Tensor { [INFO] [stderr] | ----------------------- method in this implementation [INFO] [stderr] ... [INFO] [stderr] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: `easynn` (lib) generated 7 warnings (run `cargo fix --lib -p easynn` to apply 2 suggestions) [INFO] [stderr] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stderr] --> src/models/sequential.rs:180:9 [INFO] [stderr] | [INFO] [stderr] 180 | use crate::layers::activation::Activation::*; [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_imports)]` (part of `#[warn(unused)]`) on by default [INFO] [stderr] [INFO] [stderr] warning: unused import: `rand::Rng` [INFO] [stderr] --> src/models/sequential.rs:207:9 [INFO] [stderr] | [INFO] [stderr] 207 | use rand::Rng; [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: `easynn` (lib test) generated 9 warnings (7 duplicates) (run `cargo fix --lib -p easynn --tests` to apply 2 suggestions) [INFO] [stderr] Finished `test` profile [unoptimized + debuginfo] target(s) in 0.09s [INFO] [stderr] Running unittests src/lib.rs (/opt/rustwide/target/debug/deps/easynn-4e88085c55175155) [INFO] [stdout] [INFO] [stdout] running 7 tests [INFO] [stdout] test layers::dense::test_add_weight_delta_to ... ok [INFO] [stdout] test layers::dense::test_dense_activate ... ok [INFO] [stdout] test models::sequential::test_sequential_predict ... ok [INFO] [stdout] test layers::dense::test_dense_descend ... ok [INFO] [stdout] test layers::dense::test_dense_forward ... ok [INFO] [stdout] test layers::dense::test_dense_backpropagate ... ok [INFO] [stdout] test models::sequential::test_sequential_xor1 ... FAILED [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] [INFO] [stdout] ---- models::sequential::test_sequential_xor1 stdout ---- [INFO] [stdout] [Epoch 0] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 1 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.9604084075703434 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0015678270786475988 [INFO] [stdout] [Epoch 1] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0015057411263318425 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.9253905083898842 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8887450442568688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.005794543919650813 [INFO] [stdout] [Epoch 2] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.005565079980427657 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8591297540124964 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8251082157528614 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0120587672381295 [INFO] [stdout] [Epoch 3] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.01158124005548889 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8001949296581319 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.7685072104429607 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.019849281547145804 [INFO] [stdout] [Epoch 4] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.019063249997860705 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7476916769426468 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.7180830865350358 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.028747244597585715 [INFO] [stdout] [Epoch 5] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.027608853711494255 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7008436646470912 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6730902555264082 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.03841115347899464 [INFO] [stdout] [Epoch 6] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0368900718011892 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6589761736601834 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6328807171826032 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.04856415124938951 [INFO] [stdout] [Epoch 7] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.04664101085986519 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6215020385768922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5968905578486298 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0589833172768636 [INFO] [stdout] [Epoch 8] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.056647577912639205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5879096014786713 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5646283812595159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.06949063831019844 [INFO] [stdout] [Epoch 9] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.06673880903304125 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5577523842682559 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5356653898506488 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.07994540305066848 [INFO] [stdout] [Epoch 10] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.07677956508977549 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5306402292345613 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5096268761563034 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0902378018820396 [INFO] [stdout] [Epoch 11] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.08666438492741071 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.506231694403644 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4861849193047038 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.10028354645894774 [INFO] [stdout] [Epoch 12] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.09631231801905962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.48422752164524313 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.46505211178754813 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11001935193018592 [INFO] [stdout] [Epoch 13] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.10566258559362296 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.46436502226409265 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4459761673819026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11939914842691665 [INFO] [stdout] [Epoch 14] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.11467094214906946 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4464132476028314 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4287352829972381 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1283909087092283 [INFO] [stdout] [Epoch 15] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.12330662872418802 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.43016883160783076 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4131341458756494 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.13697399607587832 [INFO] [stdout] [Epoch 16] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.13154982583110542 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4154524088616766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.399000493470252 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1451369512591618 [INFO] [stdout] [Epoch 17] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.13938952798911788 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4021055256929987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.38618214687506225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.15287564943876922 [INFO] [stdout] [Epoch 18] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.14682177372080024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.38998797399879964 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3745444502279615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.16019176904619703 [INFO] [stdout] [Epoch 19] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.15384817499176173 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3789754876654664 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.36396805835343543 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.16709152297614877 [INFO] [stdout] [Epoch 20] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16047469866607572 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3689577502152377 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3543470233062425 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.17358461041269244 [INFO] [stdout] [Epoch 21] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16671065984012098 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3598366697589888 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3455871376360675 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.17968335391916782 [INFO] [stdout] [Epoch 22] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.17256789310372916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3515248836943566 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3376044982996005 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1854019919049373 [INFO] [stdout] [Epoch 23] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.17806007302525198 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.34394446101275905 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.33032426035619966 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1907561012160999 [INFO] [stdout] [Epoch 24] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.18320215960768285 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3370257747078918 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.32367955402901033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1957621285262537 [INFO] [stdout] [Epoch 25] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.18800994823634534 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3307065207294596 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3176105425081286 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20043701253356827 [INFO] [stdout] [Epoch 26] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.19249970683696158 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3249308632993528 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3120636011122582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20479788179213848 [INFO] [stdout] [Epoch 27] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.19668788567288417 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3196486892885243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3069906011922628 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2088618153956102 [INFO] [stdout] [Epoch 28] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2005908875056507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3148149568140703 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3023482845238008 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2126456557546456 [INFO] [stdout] [Epoch 29] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20422488778646108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.31038912531933294 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.29809771595625845 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21616586442236962 [INFO] [stdout] [Epoch 30] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2076056961909364 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3063346561979262 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2942038038120628 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.219438413370627 [INFO] [stdout] [Epoch 31] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21074865220083644 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3026185745602985 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.29063487900728807 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22247870534470718 [INFO] [stdout] [Epoch 32] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2136685486127371 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29921108405703595 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.28736232512795734 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2253015179591628 [INFO] [stdout] [Epoch 33] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21637957784765469 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2960852277991607 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.28436025277789667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22792096707134105 [INFO] [stdout] [Epoch 34] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2188952967749855 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29321658937993195 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.28160521244007164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2303504857067969 [INFO] [stdout] [Epoch 35] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22122860647247247 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29058302882879167 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2790759408867587 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23260281543268807 [INFO] [stdout] [Epoch 36] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2233917439412139 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.288164449036265 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27675313685401814 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23469000759925338 [INFO] [stdout] [Epoch 37] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2253962832979791 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2859425887960221 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2746192622792909 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23662343231055846 [INFO] [stdout] [Epoch 38] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2272531443907126 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2839008391315922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2726583659015742 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23841379335659502 [INFO] [stdout] [Epoch 39] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22897260713932255 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28202408002288587 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27085592645357426 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24007114765035864 [INFO] [stdout] [Epoch 40] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23056433020304978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2802985350324028 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2691987130447159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.241604927974868 [INFO] [stdout] [Epoch 41] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23203737282670556 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2787116416618533 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26767466065164147 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24302396806401566 [INFO] [stdout] [Epoch 42] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23340021892832008 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27725193555468886 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2662727589063221 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24433652922423862 [INFO] [stdout] [Epoch 43] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23466080266659559 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27590894690532475 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2649829526074742 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24555032785687117 [INFO] [stdout] [Epoch 44] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23582653487337346 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27467310764731406 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26379605258408184 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24667256336841506 [INFO] [stdout] [Epoch 45] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.236904329858658 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2735356681752188 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2627036557150827 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24770994606186073 [INFO] [stdout] [Epoch 46] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23790063219744112 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2724886225125566 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26169807306066295 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24866872469000195 [INFO] [stdout] [Epoch 47] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2388214431919061 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27152464097449264 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26077226519150715 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2495547134242922 [INFO] [stdout] [Epoch 48] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2396723467723167 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27063700949192365 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25991978391564874 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25037331805261615 [INFO] [stdout] [Epoch 49] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24045853465735742 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2698195748658294 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25913471970074875 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25112956126846486 [INFO] [stdout] [Epoch 50] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24118483064185708 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26906669530946564 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25841165417481776 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2518281069541293 [INFO] [stdout] [Epoch 51] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24185571391836794 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2683731957130047 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2577456171623775 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25247328339315145 [INFO] [stdout] [Epoch 52] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24247534137040352 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26773432713224893 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2571320477774202 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2530691053736147 [INFO] [stdout] [Epoch 53] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24304756880043923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26714573006138526 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2565667591505635 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2536192951649812 [INFO] [stdout] [Epoch 54] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24357597107606663 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2666034011006487 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25604590641667263 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.254127302367953 [INFO] [stdout] [Epoch 55] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24406386119379983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26610366267419744 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2555659576319095 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2545963226500048 [INFO] [stdout] [Epoch 56] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24451430827268159 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2656431354923784 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25512366732649094 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2550293153894245 [INFO] [stdout] [Epoch 57] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2449301544996194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2652187134865977 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2547160524321396 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25542902025842396 [INFO] [stdout] [Epoch 58] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2453140310558058 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.264827540974882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2543403703518883 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25579797278159827 [INFO] [stdout] [Epoch 59] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24566837305906172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2644669918424474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25399409896509856 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2561385189100685 [INFO] [stdout] [Epoch 60] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24599543356084402 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26413465054468344 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25367491838272643 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2564528286543677 [INFO] [stdout] [Epoch 61] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24629729663926836 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26382829476030817 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25338069428741283 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25674290882075984 [INFO] [stdout] [Epoch 62] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.246575889631071 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2635458795404111 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25310946271022416 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2570106148964541 [INFO] [stdout] [Epoch 63] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24683299454616728 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2632855228149882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2528594161111284 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2572576621292422 [INFO] [stdout] [Epoch 64] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2470702587085366 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2630454921326366 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2526288906437982 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2574856358466267 [INFO] [stdout] [Epoch 65] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24728920466671234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26282419252155864 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2524163544973195 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25769600105860885 [INFO] [stdout] [Epoch 66] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24749123941629975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2626201553711141 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2522203972180328 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2578901113871013 [INFO] [stdout] [Epoch 67] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24767766297578364 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2624320282430245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25203971992421575 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2580692173634779 [INFO] [stdout] [Epoch 68] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24784967635549549 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2622585655301365 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2518731263347585 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25823447413416034 [INFO] [stdout] [Epoch 69] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24800838895805874 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2620986198884995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2517195145405307 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2583869486124066 [INFO] [stdout] [Epoch 70] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24815482544696615 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2619511343755428 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25157786945388727 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2585276261126679 [INFO] [stdout] [Epoch 71] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24828993211821698 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.261815135233421 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2514472558777938 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25865741650204627 [INFO] [stdout] [Epoch 72] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24841458280817585 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26168972526224643 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2513268121414779 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2587771599015441 [INFO] [stdout] [Epoch 73] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2485295843690535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2615740777329867 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25121574425437704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.258887631967977 [INFO] [stdout] [Epoch 74] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2486356817416555 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26146743079437135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2511133205345313 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2589895487856303 [INFO] [stdout] [Epoch 75] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2487335626533298 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2613690823322544 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2510188666715144 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2590835713950057 [INFO] [stdout] [Epoch 76] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24882386196737383 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26127838524358266 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25093176118755434 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25917030998431423 [INFO] [stdout] [Epoch 77] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24890716570854574 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26119474309046614 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25085143126370135 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2592503277677646 [INFO] [stdout] [Epoch 78] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2489840147877714 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26111760610287155 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25077734890081577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2593241445731377 [INFO] [stdout] [Epoch 79] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2490549084476517 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2610464675011971 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25070902738776774 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2593922401596737 [INFO] [stdout] [Epoch 80] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2491203074489609 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26098086011246663 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2506460180516312 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2594550572858878 [INFO] [stdout] [Epoch 81] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249180637016977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2609203532561381 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2505879072668136 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.259513004545611 [INFO] [stdout] [Epoch 82] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24923628956521518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2608645498775595 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25053431370202695 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2595664589892941 [INFO] [stdout] [Epoch 83] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24928762721292844 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2608130839089698 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2504848857857935 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2596157685464368 [INFO] [stdout] [Epoch 84] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24933498411160834 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2607656178396332 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2504392993728029 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25966125426388964 [INFO] [stdout] [Epoch 85] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24937866859465013 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2607218404782335 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2503972555949149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2597032123737376 [INFO] [stdout] [Epoch 86] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24941896516334822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260681464892063 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2503584788819567 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25974191620349496 [INFO] [stdout] [Epoch 87] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24945613632144725 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2606442265088202 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25032271513869053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.259777617940429 [INFO] [stdout] [Epoch 88] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24949042426959875 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2606098813680022 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502897300654492 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25981055026097577 [INFO] [stdout] [Epoch 89] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249522052470252 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26057820450994307 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502593076109694 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25984092783541357 [INFO] [stdout] [Epoch 90] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24955122709274213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26054898849153113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502312485468866 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2598689487172161 [INFO] [stdout] [Epoch 91] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24957813834762543 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2605220420185283 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25020536915421504 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25989479562581574 [INFO] [stdout] [Epoch 92] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24960296171864463 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26049718868523536 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25018150001292067 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25991863713086266 [INFO] [stdout] [Epoch 93] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24962585910009177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604742658129935 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25015948488641976 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599406287454662 [INFO] [stdout] [Epoch 94] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24964697984675704 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604531233797027 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25013917969348737 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25996091393534565 [INFO] [stdout] [Epoch 95] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24966646174311752 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604336230331632 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501204515606711 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599796250503043 [INFO] [stdout] [Epoch 96] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24968443189792386 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604156371816266 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25010317794885556 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25999688418395567 [INFO] [stdout] [Epoch 97] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24970100756988267 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26039904815547016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.250087245848135 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600128039671895 [INFO] [stdout] [Epoch 98] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24971629692970068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603837474343947 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500725510356142 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260027488300448 [INFO] [stdout] [Epoch 99] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24973039976336225 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26036963493499526 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500589973911912 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600410330295022 [INFO] [stdout] [Epoch 100] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249743408121146 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26035661835395907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25004649626676423 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260053526569063 [INFO] [stdout] [Epoch 101] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24975540691654033 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603446125625257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500349659046717 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600650504782317 [INFO] [stdout] [Epoch 102] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497664744789061 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603335390481885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500243309015026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26007567999149206 [INFO] [stdout] [Epoch 103] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24977668306344147 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603233253999361 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500145217137209 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26008548450866215 [INFO] [stdout] [Epoch 104] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497860993217318 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603139048336224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500054742018335 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26009452804696603 [INFO] [stdout] [Epoch 105] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24979478473591893 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26030521575432825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24999712921007952 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601028696581421 [INFO] [stdout] [Epoch 106] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24980279601929256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602972013528172 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24998943217886846 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601105638132823 [INFO] [stdout] [Epoch 107] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498101854858894 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26028980923342415 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24998233278740367 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601176607578924 [INFO] [stdout] [Epoch 108] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24981700139149313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26028299107091946 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24997578462413442 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601242068394682 [INFO] [stdout] [Epoch 109] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24982328824823857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602767022940862 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24996974488286383 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26013024480971086 [INFO] [stdout] [Epoch 110] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498290871148598 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602709017939252 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24996417408250937 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601358141033402 [INFO] [stdout] [Epoch 111] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24983443586446155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602655516545683 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24995903580867107 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601409510953125 [INFO] [stdout] [Epoch 112] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24983936943155194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26026061690512553 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24995429647530648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601456893381129 [INFO] [stdout] [Epoch 113] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24984392003993758 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26025606529083806 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249949925104945 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601500597806626 [INFO] [stdout] [Epoch 114] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24984811741296242 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602518670620292 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994589312599708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015409097026265 [INFO] [stdout] [Epoch 115] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985198896745453 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26024799477946786 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994217418582518 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015780923888654 [INFO] [stdout] [Epoch 116] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985555999264103 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26024442313486673 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993874397835056 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601612388750328 [INFO] [stdout] [Epoch 117] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498588538151961 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602411287853367 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499355800850619 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016440228225646 [INFO] [stdout] [Epoch 118] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498618919514938 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602380902007081 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993266182838483 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016732012540744 [INFO] [stdout] [Epoch 119] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986469424805613 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602352875227224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992997013644752 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017001146553187 [INFO] [stdout] [Epoch 120] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986727901111178 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602327024351657 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499274874183583 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601724938843118 [INFO] [stdout] [Epoch 121] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986966312610823 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602303180440959 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992519744917505 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601747835988538 [INFO] [stdout] [Epoch 122] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987186216795454 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022811876737656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992308526381382 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601768955675755 [INFO] [stdout] [Epoch 123] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987389050271494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022609023279486 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499211370592016 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017884358787896 [INFO] [stdout] [Epoch 124] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987576138141449 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022421918409466 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499193401040302 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018064038624716 [INFO] [stdout] [Epoch 125] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987748702656748 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022249339431136 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991768265552256 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601822977013524 [INFO] [stdout] [Epoch 126] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498790787119948 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602209015858378 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499161538826648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018382636071624 [INFO] [stdout] [Epoch 127] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988054683644795 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602194333567016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499147437954025 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601852363514223 [INFO] [stdout] [Epoch 128] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988190099152213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260218079112567 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991344317933561 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018653688534255 [INFO] [stdout] [Epoch 129] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988315002429928 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602168300040204 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991224353548755 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018773645930315 [INFO] [stdout] [Epoch 130] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498843020951313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602156778687265 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991113702475165 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601888429105815 [INFO] [stdout] [Epoch 131] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988536473093914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021461517807687 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499101164166517 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260189863468097 [INFO] [stdout] [Epoch 132] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498863448743773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021363498798133 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499091750420843 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019080479962936 [INFO] [stdout] [Epoch 133] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249887248929181 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021273089348324 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990830674972841 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601916730553723 [INFO] [stdout] [Epoch 134] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988808280199667 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260211896986897 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990750586584318 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601924739081086 [INFO] [stdout] [Epoch 135] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498888519409648 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021112781919814 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990676715718527 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601932125902662 [INFO] [stdout] [Epoch 136] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498895613713091 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021041836441067 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990608579680748 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601938939280983 [INFO] [stdout] [Epoch 137] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989021572816325 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602097639867613 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499054573325132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019452237321183 [INFO] [stdout] [Epoch 138] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989081928685036 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602091604103822 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990487765775896 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019510203164753 [INFO] [stdout] [Epoch 139] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989137599081218 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020860369136883 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990434298481862 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601956366907047 [INFO] [stdout] [Epoch 140] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989188947737087 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020809019200475 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990384982002953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601961298436825 [INFO] [stdout] [Epoch 141] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989236310149093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602076165569904 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990339494096173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019658471270163 [INFO] [stdout] [Epoch 142] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249892799957697 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602071796915156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499029753753601 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601970042697543 [INFO] [stdout] [Epoch 143] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498932029002905 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020677674103687 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499025883817204 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019739125612074 [INFO] [stdout] [Epoch 144] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498935745619971 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602064050726216 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990223143137444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601977482002789 [INFO] [stdout] [Epoch 145] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989391737116662 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020606225774456 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990190219196687 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601980774344222 [INFO] [stdout] [Epoch 146] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989423356763799 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020574605641755 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499015985122124 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601983811096978 [INFO] [stdout] [Epoch 147] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989452521737296 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020545440255144 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990131840783958 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601986612102602 [INFO] [stdout] [Epoch 148] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989479422595312 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602051853904567 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249901060048624 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601989195662341 [INFO] [stdout] [Epoch 149] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498950423510306 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602049372623891 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990082174642805 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601991578656719 [INFO] [stdout] [Epoch 150] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989527121381097 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602047083970648 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499006019441708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019937766558277 [INFO] [stdout] [Epoch 151] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989548230964542 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020449729906603 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990039920565288 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601995804021044 [INFO] [stdout] [Epoch 152] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989567701780102 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020430258906924 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499002122061721 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601997673998869 [INFO] [stdout] [Epoch 153] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498958566104714 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020412299483225 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499000397238671 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601999398807469 [INFO] [stdout] [Epoch 154] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989602226108953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020395734288126 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989988063173355 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020009897165103 [INFO] [stdout] [Epoch 155] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989617505199407 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020380455084297 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989973389026002 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602002457120788 [INFO] [stdout] [Epoch 156] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249896315981501 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020366362037123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989959854063515 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602003810608138 [INFO] [stdout] [Epoch 157] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989644597042626 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602035336306252 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498994736984832 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020050590220867 [INFO] [stdout] [Epoch 158] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989656586810202 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602034137322512 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989935854808493 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020062105196284 [INFO] [stdout] [Epoch 159] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498966764579261 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602033031418331 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498992523370474 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602007272624523 [INFO] [stdout] [Epoch 160] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989677846248035 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602032011367733 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989915437138827 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020082522764526 [INFO] [stdout] [Epoch 161] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989687254825174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602031070505719 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989906401100048 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020091558763625 [INFO] [stdout] [Epoch 162] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989695932998734 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602030202684703 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498989806654703 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260200998932829 [INFO] [stdout] [Epoch 163] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989703937471053 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602029402234358 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989890379021942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602010758077927 [INFO] [stdout] [Epoch 164] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989711320542585 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602028663924556 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989883288294615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020114671482164 [INFO] [stdout] [Epoch 165] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498971813045367 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020279829311954 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498987674803439 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020121211721603 [INFO] [stdout] [Epoch 166] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989724411699638 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202735480468 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989870715507356 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020127244230956 [INFO] [stdout] [Epoch 167] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989730205321634 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602026775440849 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989865151297136 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602013280842613 [INFO] [stdout] [Epoch 168] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989735549174685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602026241054155 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989860019047347 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201379406631 [INFO] [stdout] [Epoch 169] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989740478175107 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020257481529324 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989855285224016 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020142674475544 [INFO] [stdout] [Epoch 170] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989745024528584 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602025293516579 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249898509188965 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602014704079378 [INFO] [stdout] [Epoch 171] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498974921794063 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020248741745183 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989846891535358 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020151068147024 [INFO] [stdout] [Epoch 172] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897530858107 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602024487386783 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989843176825974 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020154782849697 [INFO] [stdout] [Epoch 173] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989756653411163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020241306261177 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498983975049655 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020158209173405 [INFO] [stdout] [Epoch 174] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989759944052461 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602023801561461 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989836590159598 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201613695055 [INFO] [stdout] [Epoch 175] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989762979235422 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020234980427165 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989833675165585 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016428449537 [INFO] [stdout] [Epoch 176] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989765778791703 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020232180867053 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498983098646808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016697318934 [INFO] [stdout] [Epoch 177] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989768361013426 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020229598642086 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989828506499234 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020169453155184 [INFO] [stdout] [Epoch 178] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989770742772635 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202272168801 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989826219055036 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020171740596815 [INFO] [stdout] [Epoch 179] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897729396316 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020225020018783 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989824109189446 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020173850460254 [INFO] [stdout] [Epoch 180] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498977496594444 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022299370392 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498982216311668 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020175796531164 [INFO] [stdout] [Epoch 181] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989776834950966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022112469569 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989820368121168 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017759152509 [INFO] [stdout] [Epoch 182] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498977855886314 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020219400782046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989818712474537 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017924717038 [INFO] [stdout] [Epoch 183] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989780148944898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020217810699053 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981718535883 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020180774284923 [INFO] [stdout] [Epoch 184] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989781615585724 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021634405717 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989815776795984 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020182182846796 [INFO] [stdout] [Epoch 185] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989782968368562 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021499127342 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981447758249 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018348205945 [INFO] [stdout] [Epoch 186] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989784216132416 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202137435088 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989813279229361 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018468041187 [INFO] [stdout] [Epoch 187] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989785367030098 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020212592610464 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989812173906614 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018578573401 [INFO] [stdout] [Epoch 188] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989786428581487 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021153105851 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981115439214 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018680524797 [INFO] [stdout] [Epoch 189] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989787407722705 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021055191682 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989810214024466 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020187745615186 [INFO] [stdout] [Epoch 190] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989788310851405 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020209648787695 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989809346659267 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018861298001 [INFO] [stdout] [Epoch 191] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897891438686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020881577015 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989808546629244 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020189413009714 [INFO] [stdout] [Epoch 192] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989789912217134 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020208047421317 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807808707037 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019015093163 [INFO] [stdout] [Epoch 193] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979062091736 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020733872083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980712807109 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019083156735 [INFO] [stdout] [Epoch 194] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989791274599918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020668503805 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980650027418 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020191459364056 [INFO] [stdout] [Epoch 195] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979187753589 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020608210188 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980592121429 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020192038423756 [INFO] [stdout] [Epoch 196] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792433664845 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020205525972767 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989805387107905 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019257252999 [INFO] [stdout] [Epoch 197] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792946620482 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020501301699 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804894465192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020193065172564 [INFO] [stdout] [Epoch 198] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979341975443 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020204539882924 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804440067243 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020193519570406 [INFO] [stdout] [Epoch 199] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979385615813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020204103479105 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804020945042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020193938692504 [INFO] [stdout] [Epoch 200] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979425868301 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020203700954136 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989803634360078 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019432527739 [INFO] [stdout] [Epoch 201] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979462995915 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020203329677916 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989803277786404 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020194681850983 [INFO] [stdout] [Epoch 202] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979497241244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202987224555 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802948894205 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019501074311 [INFO] [stdout] [Epoch 203] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795288280456 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202671356474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802645534515 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019531410273 [INFO] [stdout] [Epoch 204] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795579627055 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020238000982 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802365725203 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195593912 [INFO] [stdout] [Epoch 205] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979584835589 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020211128093 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802107637993 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195851999167 [INFO] [stdout] [Epoch 206] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979609622282 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020186341396 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801869586564 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196090050546 [INFO] [stdout] [Epoch 207] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979632484738 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020163478935 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801650015514 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196309621557 [INFO] [stdout] [Epoch 208] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897965357234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202014239133 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801447490173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196512146865 [INFO] [stdout] [Epoch 209] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796730228714 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020122940796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801260687255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019669894975 [INFO] [stdout] [Epoch 210] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796909634215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201050002423 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801088386202 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019687125077 [INFO] [stdout] [Epoch 211] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979707511214 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200884524464 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980092946118 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197030175773 [INFO] [stdout] [Epoch 212] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797227743724 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020073189286 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800782873806 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197176763127 [INFO] [stdout] [Epoch 213] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797368526234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200591110326 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980064766626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019731197064 [INFO] [stdout] [Epoch 214] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797498379543 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200461257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980052295514 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197436681736 [INFO] [stdout] [Epoch 215] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979761815209 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020034148443 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980040792558 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197551711277 [INFO] [stdout] [Epoch 216] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979772862648 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020023101001 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800301825973 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019765781087 [INFO] [stdout] [Epoch 217] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797830524538 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200129111937 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800203963064 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019775567374 [INFO] [stdout] [Epoch 218] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797924512064 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200035124397 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980011369745 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197845939347 [INFO] [stdout] [Epoch 219] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979801120317 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019994843327 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800030439308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197929197475 [INFO] [stdout] [Epoch 220] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798091164292 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019986847212 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799953644654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198005992107 [INFO] [stdout] [Epoch 221] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798164917867 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019979471854 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799882811703 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198076825035 [INFO] [stdout] [Epoch 222] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798232945828 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199726690557 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979981747765 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198142159084 [INFO] [stdout] [Epoch 223] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798295692658 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019966394371 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799757215586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198202421124 [INFO] [stdout] [Epoch 224] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798353568335 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019960606802 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979970163179 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019825800491 [INFO] [stdout] [Epoch 225] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979840695102 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019955268532 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979965036307 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019830927361 [INFO] [stdout] [Epoch 226] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798456189496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019950344682 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799603074433 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198356562224 [INFO] [stdout] [Epoch 227] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798501605498 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199458030807 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979955945691 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019840017974 [INFO] [stdout] [Epoch 228] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798543495775 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199416140505 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799519225475 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019844041116 [INFO] [stdout] [Epoch 229] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798582134043 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019937750223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799482117292 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198477519335 [INFO] [stdout] [Epoch 230] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798617772746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199341863515 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799447889874 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198511746734 [INFO] [stdout] [Epoch 231] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798650644754 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019930899149 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799416319597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019854331698 [INFO] [stdout] [Epoch 232] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798680964845 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019927867138 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799387200193 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019857243638 [INFO] [stdout] [Epoch 233] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979870893113 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199250705084 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799360341364 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019859929519 [INFO] [stdout] [Epoch 234] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798734726337 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019922490985 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979933556765 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198624068896 [INFO] [stdout] [Epoch 235] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979875851903 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199201117145 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979931271715 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019864691936 [INFO] [stdout] [Epoch 236] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979878046463 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019917917154 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799291640594 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019866799592 [INFO] [stdout] [Epoch 237] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798800706572 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199158929574 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799272200225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198687436263 [INFO] [stdout] [Epoch 238] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979881937709 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019914025905 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799254269066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019870536742 [INFO] [stdout] [Epoch 239] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798836598184 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019912303793 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979923772993 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198721906534 [INFO] [stdout] [Epoch 240] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798852482367 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199107153746 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979922247476 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019873716169 [INFO] [stdout] [Epoch 241] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798867133434 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019909250265 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799208403865 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198751232565 [INFO] [stdout] [Epoch 242] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979888064712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199078988965 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979919542533 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198764211083 [INFO] [stdout] [Epoch 243] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798893111698 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199066524363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799183454353 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019877618206 [INFO] [stdout] [Epoch 244] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798904608643 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199055027404 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799172412686 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198787223714 [INFO] [stdout] [Epoch 245] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979891521306 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019904442297 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897991622282 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198797408167 [INFO] [stdout] [Epoch 246] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798924994233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199034641794 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799152834366 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019880680199 [INFO] [stdout] [Epoch 247] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798934016066 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019902561994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897991441698 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198815466555 [INFO] [stdout] [Epoch 248] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798942337527 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019901729846 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979913617786 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198823458474 [INFO] [stdout] [Epoch 249] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798950012987 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199009622996 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799128806361 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019883082996 [INFO] [stdout] [Epoch 250] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798957092574 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019900254339 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799122007123 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019883762919 [INFO] [stdout] [Epoch 251] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979896362256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019899601337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979911573572 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198843900566 [INFO] [stdout] [Epoch 252] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798969645619 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198989990306 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799109951172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198849685094 [INFO] [stdout] [Epoch 253] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798975201094 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198984434817 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799104615695 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198855020565 [INFO] [stdout] [Epoch 254] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798980325292 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019897931061 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799099694426 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019885994181 [INFO] [stdout] [Epoch 255] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979898505167 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198974584213 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799095155196 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019886448103 [INFO] [stdout] [Epoch 256] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798989411147 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019897022471 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799090968356 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019886866785 [INFO] [stdout] [Epoch 257] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798993432194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019896620367 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799087106557 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019887252964 [INFO] [stdout] [Epoch 258] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979899714107 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198962494767 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799083544545 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198876091627 [INFO] [stdout] [Epoch 259] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979900056202 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989590738 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799080259065 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198879377104 [INFO] [stdout] [Epoch 260] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799003717403 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019895591841 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979907722863 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019888240751 [INFO] [stdout] [Epoch 261] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979900662782 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019895300799 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799074433472 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019888520266 [INFO] [stdout] [Epoch 262] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799009312297 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019895032349 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799071855304 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019888778082 [INFO] [stdout] [Epoch 263] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799011788377 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894784739 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906947728 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889015883 [INFO] [stdout] [Epoch 264] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799014072234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894556352 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906728386 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889235223 [INFO] [stdout] [Epoch 265] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799016178785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894345695 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799065260726 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198894375357 [INFO] [stdout] [Epoch 266] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979901812181 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198941513917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799063394655 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889624141 [INFO] [stdout] [Epoch 267] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799019913983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893972172 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906167344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198897962604 [INFO] [stdout] [Epoch 268] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799021567036 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198938068656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799060085857 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198899550184 [INFO] [stdout] [Epoch 269] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799023091755 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893654393 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799058621504 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890101452 [INFO] [stdout] [Epoch 270] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799024498113 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893513755 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905727085 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198902365155 [INFO] [stdout] [Epoch 271] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902579529 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198933840366 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799056025033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890361096 [INFO] [stdout] [Epoch 272] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902699177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893264388 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799054875944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890476003 [INFO] [stdout] [Epoch 273] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799028095358 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198931540267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799053816053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890581991 [INFO] [stdout] [Epoch 274] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902911327 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198930522337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799052838457 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989067975 [INFO] [stdout] [Epoch 275] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030052165 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198929583427 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905193674 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890769919 [INFO] [stdout] [Epoch 276] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030918167 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198928717414 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905110503 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890853088 [INFO] [stdout] [Epoch 277] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799031716944 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198927918625 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799050337888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198909298015 [INFO] [stdout] [Epoch 278] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799032453702 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892718185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799049630299 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891000559 [INFO] [stdout] [Epoch 279] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903313328 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892650226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799048977632 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198910658243 [INFO] [stdout] [Epoch 280] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799033760096 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198925875426 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904837565 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198911260217 [INFO] [stdout] [Epoch 281] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903433825 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198925297267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799047820382 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891181545 [INFO] [stdout] [Epoch 282] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903487152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198924763965 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904730823 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989123276 [INFO] [stdout] [Epoch 283] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799035363397 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892427208 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904683584 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198912799974 [INFO] [stdout] [Epoch 284] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903581708 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892381839 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904640012 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891323568 [INFO] [stdout] [Epoch 285] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036235544 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198923399906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045998223 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198913637554 [INFO] [stdout] [Epoch 286] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903662153 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892301391 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904562753 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914008236 [INFO] [stdout] [Epoch 287] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903697754 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892265787 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045285607 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891435014 [INFO] [stdout] [Epoch 288] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903730592 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198922329485 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044970235 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914665504 [INFO] [stdout] [Epoch 289] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037608804 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198922026583 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044679337 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891495639 [INFO] [stdout] [Epoch 290] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037888186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989217472 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904441104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891522467 [INFO] [stdout] [Epoch 291] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038145866 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989214895 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044163566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891547214 [INFO] [stdout] [Epoch 292] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038383548 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989212518 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043935285 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915700404 [INFO] [stdout] [Epoch 293] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038602784 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198921032545 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904372473 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891591094 [INFO] [stdout] [Epoch 294] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038805002 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920830323 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043530525 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916105136 [INFO] [stdout] [Epoch 295] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038991517 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920643794 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043351393 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916284254 [INFO] [stdout] [Epoch 296] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039163554 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892047174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904318616 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891644946 [INFO] [stdout] [Epoch 297] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039322227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892031304 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043033767 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916601833 [INFO] [stdout] [Epoch 298] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990394686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892016667 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990428932 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989167424 [INFO] [stdout] [Epoch 299] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039603608 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920031645 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042763539 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891687204 [INFO] [stdout] [Epoch 300] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039728125 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891990711 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904264396 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916991616 [INFO] [stdout] [Epoch 301] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039842983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919792237 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042533647 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891710191 [INFO] [stdout] [Epoch 302] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903994892 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919686277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042431907 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917203635 [INFO] [stdout] [Epoch 303] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040046629 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891958855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042338057 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891729746 [INFO] [stdout] [Epoch 304] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904013676 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919498416 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042251498 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891738401 [INFO] [stdout] [Epoch 305] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040219893 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919415277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042171668 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891746384 [INFO] [stdout] [Epoch 306] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040296573 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891933858 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904209803 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891753746 [INFO] [stdout] [Epoch 307] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040367294 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919267845 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042030097 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917605364 [INFO] [stdout] [Epoch 308] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904043252 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891920259 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041967461 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917667997 [INFO] [stdout] [Epoch 309] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904049269 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891914241 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041909674 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891772576 [INFO] [stdout] [Epoch 310] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040548186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989190869 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041856373 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891777904 [INFO] [stdout] [Epoch 311] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040599373 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891903571 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041807212 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989178282 [INFO] [stdout] [Epoch 312] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990406466 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918988463 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041761857 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917873527 [INFO] [stdout] [Epoch 313] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904069015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918944903 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041720032 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917915344 [INFO] [stdout] [Epoch 314] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040730326 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989189047 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904168146 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917953913 [INFO] [stdout] [Epoch 315] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040767371 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918867654 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041645872 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891798948 [INFO] [stdout] [Epoch 316] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904080155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891883346 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041613062 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891802228 [INFO] [stdout] [Epoch 317] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040833066 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891880193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904158278 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918052534 [INFO] [stdout] [Epoch 318] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040862137 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891877284 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041554853 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891808045 [INFO] [stdout] [Epoch 319] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040888955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918746007 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990415291 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918106197 [INFO] [stdout] [Epoch 320] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040913696 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891872125 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041505337 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891812994 [INFO] [stdout] [Epoch 321] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904093652 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891869841 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041483424 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918151843 [INFO] [stdout] [Epoch 322] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040957564 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918677356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041463212 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891817204 [INFO] [stdout] [Epoch 323] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904097698 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891865792 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041444563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918190657 [INFO] [stdout] [Epoch 324] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904099488 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918640003 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041427382 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918207843 [INFO] [stdout] [Epoch 325] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041011393 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891862349 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904141152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918223686 [INFO] [stdout] [Epoch 326] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041026628 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918608234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904139688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891823832 [INFO] [stdout] [Epoch 327] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041040692 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918594156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041383381 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918251797 [INFO] [stdout] [Epoch 328] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041053656 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891858117 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904137094 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918264237 [INFO] [stdout] [Epoch 329] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041065605 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918569215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904135945 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989182757 [INFO] [stdout] [Epoch 330] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041076638 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891855817 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904134886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918286275 [INFO] [stdout] [Epoch 331] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041086813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891854799 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041339092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918296017 [INFO] [stdout] [Epoch 332] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904109618 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918538584 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904133008 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891830502 [INFO] [stdout] [Epoch 333] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041104838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918529935 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041321786 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918313314 [INFO] [stdout] [Epoch 334] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041112815 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918521936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041314117 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891832096 [INFO] [stdout] [Epoch 335] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041120178 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918514553 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041307045 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918328025 [INFO] [stdout] [Epoch 336] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041126978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891850774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904130052 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891833454 [INFO] [stdout] [Epoch 337] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041133243 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891850146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041294503 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891834053 [INFO] [stdout] [Epoch 338] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041139021 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891849568 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041288954 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891834607 [INFO] [stdout] [Epoch 339] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041144348 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918490334 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041283836 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835118 [INFO] [stdout] [Epoch 340] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041149266 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184854 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041279118 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835588 [INFO] [stdout] [Epoch 341] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041153796 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891848085 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041274768 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918360216 [INFO] [stdout] [Epoch 342] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041157978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891847665 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904127075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836421 [INFO] [stdout] [Epoch 343] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904116183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891847279 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904126704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836792 [INFO] [stdout] [Epoch 344] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041165406 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184692 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041263613 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837132 [INFO] [stdout] [Epoch 345] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904116868 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918465914 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041260471 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918374454 [INFO] [stdout] [Epoch 346] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041171704 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891846288 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041257563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837735 [INFO] [stdout] [Epoch 347] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041174507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891846006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041254876 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838003 [INFO] [stdout] [Epoch 348] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041177083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918457466 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412524 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382487 [INFO] [stdout] [Epoch 349] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041179464 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891845508 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041250116 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838475 [INFO] [stdout] [Epoch 350] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904118165 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891845287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041248006 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918386844 [INFO] [stdout] [Epoch 351] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041183675 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918450826 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041246075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838877 [INFO] [stdout] [Epoch 352] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041185545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891844895 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041244276 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839056 [INFO] [stdout] [Epoch 353] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041187272 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184472 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904124261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183922 [INFO] [stdout] [Epoch 354] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041188865 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184456 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904124108 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839372 [INFO] [stdout] [Epoch 355] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041190341 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891844412 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123968 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918395104 [INFO] [stdout] [Epoch 356] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041191685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918442766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123838 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839638 [INFO] [stdout] [Epoch 357] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041192928 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918441495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041237185 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839757 [INFO] [stdout] [Epoch 358] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041194083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891844033 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041236074 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918398657 [INFO] [stdout] [Epoch 359] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843925 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041235053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839968 [INFO] [stdout] [Epoch 360] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119613 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843826 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123411 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918400594 [INFO] [stdout] [Epoch 361] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041197028 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843734 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041233254 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918401444 [INFO] [stdout] [Epoch 362] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119786 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843649 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041232444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918402226 [INFO] [stdout] [Epoch 363] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041198626 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918435716 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123171 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918402965 [INFO] [stdout] [Epoch 364] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041199343 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918434984 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041231023 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840363 [INFO] [stdout] [Epoch 365] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041200003 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843431 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412304 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840424 [INFO] [stdout] [Epoch 366] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041200608 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843369 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041229813 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840482 [INFO] [stdout] [Epoch 367] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120117 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918433113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122927 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840534 [INFO] [stdout] [Epoch 368] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120169 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843259 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122878 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840583 [INFO] [stdout] [Epoch 369] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041202163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918432097 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041228314 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840627 [INFO] [stdout] [Epoch 370] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041202607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041227892 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840667 [INFO] [stdout] [Epoch 371] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041203006 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843122 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041227514 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840704 [INFO] [stdout] [Epoch 372] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041203373 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843085 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122716 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840738 [INFO] [stdout] [Epoch 373] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041203722 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918430487 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041226826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184077 [INFO] [stdout] [Epoch 374] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120404 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843015 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041226515 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407994 [INFO] [stdout] [Epoch 375] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041204339 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918429827 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041226238 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408266 [INFO] [stdout] [Epoch 376] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120461 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918429555 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840852 [INFO] [stdout] [Epoch 377] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041204871 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041225727 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840874 [INFO] [stdout] [Epoch 378] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041205094 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842904 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041225505 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408954 [INFO] [stdout] [Epoch 379] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120531 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842881 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041225305 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409126 [INFO] [stdout] [Epoch 380] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412055 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918428605 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041225116 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409304 [INFO] [stdout] [Epoch 381] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041205682 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184284 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122494 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409476 [INFO] [stdout] [Epoch 382] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041205854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842822 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224783 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840961 [INFO] [stdout] [Epoch 383] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041205998 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842806 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122464 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409737 [INFO] [stdout] [Epoch 384] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206143 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918427906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224506 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840986 [INFO] [stdout] [Epoch 385] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120627 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918427767 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224373 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409987 [INFO] [stdout] [Epoch 386] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206404 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918427623 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122425 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410087 [INFO] [stdout] [Epoch 387] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120651 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918427495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122415 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410165 [INFO] [stdout] [Epoch 388] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120661 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918427384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841026 [INFO] [stdout] [Epoch 389] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206714 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842727 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223965 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410337 [INFO] [stdout] [Epoch 390] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206798 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842717 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223876 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410414 [INFO] [stdout] [Epoch 391] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206887 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842707 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223798 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841048 [INFO] [stdout] [Epoch 392] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120697 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122372 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410553 [INFO] [stdout] [Epoch 393] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207048 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223631 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841061 [INFO] [stdout] [Epoch 394] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207114 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223576 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410653 [INFO] [stdout] [Epoch 395] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120717 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426724 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122352 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184107 [INFO] [stdout] [Epoch 396] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120723 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426657 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223476 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841073 [INFO] [stdout] [Epoch 397] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207275 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842659 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122342 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410764 [INFO] [stdout] [Epoch 398] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207325 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426535 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223376 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410803 [INFO] [stdout] [Epoch 399] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120737 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223332 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410836 [INFO] [stdout] [Epoch 400] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120742 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223276 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 401] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120747 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223232 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410903 [INFO] [stdout] [Epoch 402] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207514 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122321 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410925 [INFO] [stdout] [Epoch 403] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207542 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842625 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223176 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410936 [INFO] [stdout] [Epoch 404] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207564 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842621 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410936 [INFO] [stdout] [Epoch 405] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120758 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842618 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410936 [INFO] [stdout] [Epoch 406] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122312 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410936 [INFO] [stdout] [Epoch 407] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207614 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223099 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841095 [INFO] [stdout] [Epoch 408] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120763 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842609 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223087 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841095 [INFO] [stdout] [Epoch 409] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207653 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223065 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841095 [INFO] [stdout] [Epoch 410] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120767 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223054 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841096 [INFO] [stdout] [Epoch 411] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842599 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223032 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841096 [INFO] [stdout] [Epoch 412] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207703 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842596 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122302 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841096 [INFO] [stdout] [Epoch 413] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120772 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425935 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841097 [INFO] [stdout] [Epoch 414] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207741 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222976 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841097 [INFO] [stdout] [Epoch 415] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207758 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425863 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222976 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841097 [INFO] [stdout] [Epoch 416] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207764 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842584 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222965 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841096 [INFO] [stdout] [Epoch 417] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207775 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842582 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222954 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841096 [INFO] [stdout] [Epoch 418] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120778 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222954 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841095 [INFO] [stdout] [Epoch 419] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120779 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222943 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841095 [INFO] [stdout] [Epoch 420] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207802 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842575 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222932 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410936 [INFO] [stdout] [Epoch 421] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207808 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842573 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122292 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410936 [INFO] [stdout] [Epoch 422] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120782 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842571 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122291 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410925 [INFO] [stdout] [Epoch 423] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207825 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425685 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122291 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410925 [INFO] [stdout] [Epoch 424] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207836 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425663 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412229 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410925 [INFO] [stdout] [Epoch 425] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207847 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842564 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410914 [INFO] [stdout] [Epoch 426] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207858 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425613 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222877 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410914 [INFO] [stdout] [Epoch 427] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120787 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842559 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222865 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410914 [INFO] [stdout] [Epoch 428] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120788 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842557 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222854 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410903 [INFO] [stdout] [Epoch 429] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120789 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425547 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222843 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410903 [INFO] [stdout] [Epoch 430] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207902 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425524 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222832 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410903 [INFO] [stdout] [Epoch 431] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842549 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122282 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410903 [INFO] [stdout] [Epoch 432] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207925 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842547 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122281 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410903 [INFO] [stdout] [Epoch 433] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207936 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425436 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122281 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841088 [INFO] [stdout] [Epoch 434] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207936 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425436 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122281 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 435] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120794 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425413 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412228 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 436] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207952 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842538 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222788 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 437] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120797 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842536 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 438] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120798 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842532 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222766 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 439] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120799 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425297 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222743 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 440] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208008 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425275 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222732 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 441] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120802 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842525 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122272 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 442] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208036 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842523 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122272 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841086 [INFO] [stdout] [Epoch 443] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208036 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842521 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122271 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841085 [INFO] [stdout] [Epoch 444] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120804 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425186 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122271 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410836 [INFO] [stdout] [Epoch 445] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208047 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122271 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410825 [INFO] [stdout] [Epoch 446] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208047 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122271 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410814 [INFO] [stdout] [Epoch 447] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208052 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842514 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412227 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410803 [INFO] [stdout] [Epoch 448] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208058 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842512 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412227 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410803 [INFO] [stdout] [Epoch 449] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208063 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425097 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841079 [INFO] [stdout] [Epoch 450] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208063 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425086 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841078 [INFO] [stdout] [Epoch 451] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120807 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842507 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410764 [INFO] [stdout] [Epoch 452] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208074 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425047 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410753 [INFO] [stdout] [Epoch 453] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120808 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425025 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410753 [INFO] [stdout] [Epoch 454] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208086 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841074 [INFO] [stdout] [Epoch 455] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120809 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842498 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841073 [INFO] [stdout] [Epoch 456] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208097 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842497 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841073 [INFO] [stdout] [Epoch 457] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208102 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424947 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841072 [INFO] [stdout] [Epoch 458] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208113 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222643 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841071 [INFO] [stdout] [Epoch 459] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120812 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424914 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222632 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841071 [INFO] [stdout] [Epoch 460] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842489 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222643 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410686 [INFO] [stdout] [Epoch 461] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120812 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842488 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222643 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410675 [INFO] [stdout] [Epoch 462] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120812 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842487 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222643 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410653 [INFO] [stdout] [Epoch 463] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208113 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842486 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841064 [INFO] [stdout] [Epoch 464] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208113 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424847 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841062 [INFO] [stdout] [Epoch 465] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424847 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841061 [INFO] [stdout] [Epoch 466] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410586 [INFO] [stdout] [Epoch 467] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424814 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410586 [INFO] [stdout] [Epoch 468] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120812 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424786 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222643 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410575 [INFO] [stdout] [Epoch 469] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424764 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222632 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410575 [INFO] [stdout] [Epoch 470] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208136 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122262 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410575 [INFO] [stdout] [Epoch 471] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208147 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842472 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122262 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410564 [INFO] [stdout] [Epoch 472] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208158 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184247 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410564 [INFO] [stdout] [Epoch 473] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424675 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410564 [INFO] [stdout] [Epoch 474] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842464 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841054 [INFO] [stdout] [Epoch 475] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842464 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841053 [INFO] [stdout] [Epoch 476] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842462 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841052 [INFO] [stdout] [Epoch 477] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842461 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841051 [INFO] [stdout] [Epoch 478] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841047 [INFO] [stdout] [Epoch 479] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841046 [INFO] [stdout] [Epoch 480] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424575 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841045 [INFO] [stdout] [Epoch 481] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424575 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410437 [INFO] [stdout] [Epoch 482] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120817 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424553 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410425 [INFO] [stdout] [Epoch 483] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120817 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842454 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410414 [INFO] [stdout] [Epoch 484] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120817 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842453 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410403 [INFO] [stdout] [Epoch 485] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120817 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424503 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841039 [INFO] [stdout] [Epoch 486] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842449 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841038 [INFO] [stdout] [Epoch 487] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842448 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841036 [INFO] [stdout] [Epoch 488] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842447 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841035 [INFO] [stdout] [Epoch 489] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120817 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842446 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410337 [INFO] [stdout] [Epoch 490] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120817 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424436 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410326 [INFO] [stdout] [Epoch 491] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424425 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410314 [INFO] [stdout] [Epoch 492] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424414 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841029 [INFO] [stdout] [Epoch 493] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842439 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841029 [INFO] [stdout] [Epoch 494] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120819 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842437 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841028 [INFO] [stdout] [Epoch 495] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208197 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842435 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841027 [INFO] [stdout] [Epoch 496] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208197 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424325 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841027 [INFO] [stdout] [Epoch 497] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208202 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424314 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841025 [INFO] [stdout] [Epoch 498] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208197 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410226 [INFO] [stdout] [Epoch 499] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120819 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184102 [INFO] [stdout] [Epoch 500] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184102 [INFO] [stdout] [Epoch 501] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120819 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842428 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410176 [INFO] [stdout] [Epoch 502] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842427 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410153 [INFO] [stdout] [Epoch 503] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842426 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841013 [INFO] [stdout] [Epoch 504] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842426 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841013 [INFO] [stdout] [Epoch 505] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424237 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841012 [INFO] [stdout] [Epoch 506] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842421 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841011 [INFO] [stdout] [Epoch 507] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842421 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410087 [INFO] [stdout] [Epoch 508] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424187 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122261 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410076 [INFO] [stdout] [Epoch 509] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410076 [INFO] [stdout] [Epoch 510] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120819 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424153 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410054 [INFO] [stdout] [Epoch 511] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120819 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842414 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841004 [INFO] [stdout] [Epoch 512] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842413 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841002 [INFO] [stdout] [Epoch 513] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120819 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842412 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841002 [INFO] [stdout] [Epoch 514] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208197 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184241 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841002 [INFO] [stdout] [Epoch 515] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208208 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424076 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841001 [INFO] [stdout] [Epoch 516] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424053 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841001 [INFO] [stdout] [Epoch 517] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842403 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409987 [INFO] [stdout] [Epoch 518] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842402 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409976 [INFO] [stdout] [Epoch 519] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842401 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409965 [INFO] [stdout] [Epoch 520] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918424 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840994 [INFO] [stdout] [Epoch 521] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409926 [INFO] [stdout] [Epoch 522] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423976 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409915 [INFO] [stdout] [Epoch 523] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423965 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409904 [INFO] [stdout] [Epoch 524] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423937 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840988 [INFO] [stdout] [Epoch 525] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423937 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840987 [INFO] [stdout] [Epoch 526] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840986 [INFO] [stdout] [Epoch 527] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423904 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840985 [INFO] [stdout] [Epoch 528] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842389 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409837 [INFO] [stdout] [Epoch 529] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842388 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409826 [INFO] [stdout] [Epoch 530] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842387 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409804 [INFO] [stdout] [Epoch 531] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840979 [INFO] [stdout] [Epoch 532] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423837 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840978 [INFO] [stdout] [Epoch 533] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423826 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840977 [INFO] [stdout] [Epoch 534] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423804 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840976 [INFO] [stdout] [Epoch 535] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842379 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840975 [INFO] [stdout] [Epoch 536] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120823 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842378 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409737 [INFO] [stdout] [Epoch 537] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208235 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842376 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409737 [INFO] [stdout] [Epoch 538] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208252 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423737 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409726 [INFO] [stdout] [Epoch 539] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208252 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423715 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222543 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409715 [INFO] [stdout] [Epoch 540] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842369 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222543 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409715 [INFO] [stdout] [Epoch 541] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842368 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222543 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409704 [INFO] [stdout] [Epoch 542] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208263 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423665 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222543 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840969 [INFO] [stdout] [Epoch 543] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120827 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842364 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222532 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840968 [INFO] [stdout] [Epoch 544] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120827 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842362 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222532 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840967 [INFO] [stdout] [Epoch 545] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208274 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842361 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122252 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840966 [INFO] [stdout] [Epoch 546] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120828 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122252 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840966 [INFO] [stdout] [Epoch 547] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208285 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423576 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122252 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840964 [INFO] [stdout] [Epoch 548] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120829 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423554 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122251 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840963 [INFO] [stdout] [Epoch 549] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120829 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842354 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122251 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840963 [INFO] [stdout] [Epoch 550] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208297 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842352 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840962 [INFO] [stdout] [Epoch 551] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208302 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842351 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840961 [INFO] [stdout] [Epoch 552] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423487 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222488 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840961 [INFO] [stdout] [Epoch 553] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120832 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423465 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409587 [INFO] [stdout] [Epoch 554] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423465 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409565 [INFO] [stdout] [Epoch 555] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423465 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122251 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409554 [INFO] [stdout] [Epoch 556] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208302 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423443 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409543 [INFO] [stdout] [Epoch 557] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842343 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840953 [INFO] [stdout] [Epoch 558] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842342 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122251 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840951 [INFO] [stdout] [Epoch 559] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208302 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840951 [INFO] [stdout] [Epoch 560] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122251 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840949 [INFO] [stdout] [Epoch 561] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122251 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409476 [INFO] [stdout] [Epoch 562] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208302 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842336 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409465 [INFO] [stdout] [Epoch 563] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842335 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409454 [INFO] [stdout] [Epoch 564] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423326 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412225 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409443 [INFO] [stdout] [Epoch 565] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208324 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423304 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222488 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409443 [INFO] [stdout] [Epoch 566] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120833 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842328 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222477 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409443 [INFO] [stdout] [Epoch 567] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120834 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842326 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222466 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840943 [INFO] [stdout] [Epoch 568] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208352 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842324 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840943 [INFO] [stdout] [Epoch 569] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208363 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840943 [INFO] [stdout] [Epoch 570] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120837 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840942 [INFO] [stdout] [Epoch 571] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842317 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840941 [INFO] [stdout] [Epoch 572] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842317 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184094 [INFO] [stdout] [Epoch 573] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842315 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840939 [INFO] [stdout] [Epoch 574] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842314 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840937 [INFO] [stdout] [Epoch 575] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423126 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840935 [INFO] [stdout] [Epoch 576] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423115 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840934 [INFO] [stdout] [Epoch 577] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184231 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409326 [INFO] [stdout] [Epoch 578] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423076 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409315 [INFO] [stdout] [Epoch 579] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423076 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409304 [INFO] [stdout] [Epoch 580] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409293 [INFO] [stdout] [Epoch 581] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423043 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840928 [INFO] [stdout] [Epoch 582] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208385 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840927 [INFO] [stdout] [Epoch 583] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208385 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842301 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222432 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840926 [INFO] [stdout] [Epoch 584] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208385 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222432 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840925 [INFO] [stdout] [Epoch 585] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120839 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842299 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222432 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840924 [INFO] [stdout] [Epoch 586] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120839 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422965 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222432 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409226 [INFO] [stdout] [Epoch 587] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422954 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222432 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409215 [INFO] [stdout] [Epoch 588] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422943 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222432 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409204 [INFO] [stdout] [Epoch 589] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208402 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842292 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122242 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409193 [INFO] [stdout] [Epoch 590] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208402 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842291 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122242 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840918 [INFO] [stdout] [Epoch 591] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208408 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184229 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122242 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840918 [INFO] [stdout] [Epoch 592] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208408 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422877 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122241 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840917 [INFO] [stdout] [Epoch 593] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120842 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422854 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122241 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840916 [INFO] [stdout] [Epoch 594] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208424 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422827 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122241 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840915 [INFO] [stdout] [Epoch 595] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422816 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412224 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840914 [INFO] [stdout] [Epoch 596] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422804 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412224 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840914 [INFO] [stdout] [Epoch 597] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208435 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842278 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412224 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409126 [INFO] [stdout] [Epoch 598] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120844 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842276 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222388 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409115 [INFO] [stdout] [Epoch 599] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208446 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842275 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222388 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409115 [INFO] [stdout] [Epoch 600] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208452 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222377 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409104 [INFO] [stdout] [Epoch 601] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208458 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422716 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222377 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840909 [INFO] [stdout] [Epoch 602] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208463 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422693 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222366 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840909 [INFO] [stdout] [Epoch 603] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120847 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222366 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409077 [INFO] [stdout] [Epoch 604] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208474 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842265 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222355 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409065 [INFO] [stdout] [Epoch 605] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208485 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842264 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409065 [INFO] [stdout] [Epoch 606] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120849 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422627 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409054 [INFO] [stdout] [Epoch 607] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422605 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222333 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409054 [INFO] [stdout] [Epoch 608] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208502 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842258 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222333 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409043 [INFO] [stdout] [Epoch 609] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208513 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842256 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222321 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409043 [INFO] [stdout] [Epoch 610] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208519 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842253 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122231 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840903 [INFO] [stdout] [Epoch 611] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208524 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842251 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122231 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840903 [INFO] [stdout] [Epoch 612] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842249 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412223 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840903 [INFO] [stdout] [Epoch 613] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422466 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222288 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840902 [INFO] [stdout] [Epoch 614] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208552 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422455 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222277 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840902 [INFO] [stdout] [Epoch 615] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208557 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222277 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840901 [INFO] [stdout] [Epoch 616] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208569 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842241 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222266 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840901 [INFO] [stdout] [Epoch 617] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120858 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842239 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840901 [INFO] [stdout] [Epoch 618] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208585 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422366 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222244 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409 [INFO] [stdout] [Epoch 619] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422355 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222244 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840899 [INFO] [stdout] [Epoch 620] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842233 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408977 [INFO] [stdout] [Epoch 621] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842233 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408965 [INFO] [stdout] [Epoch 622] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120859 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842231 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408943 [INFO] [stdout] [Epoch 623] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120859 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842231 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840893 [INFO] [stdout] [Epoch 624] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120859 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842229 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840892 [INFO] [stdout] [Epoch 625] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120859 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842229 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840891 [INFO] [stdout] [Epoch 626] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120859 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184089 [INFO] [stdout] [Epoch 627] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120859 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842225 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840889 [INFO] [stdout] [Epoch 628] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408877 [INFO] [stdout] [Epoch 629] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422216 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408866 [INFO] [stdout] [Epoch 630] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208602 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422205 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408843 [INFO] [stdout] [Epoch 631] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208602 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422194 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840883 [INFO] [stdout] [Epoch 632] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208602 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842217 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840882 [INFO] [stdout] [Epoch 633] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208602 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842217 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408805 [INFO] [stdout] [Epoch 634] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222244 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408793 [INFO] [stdout] [Epoch 635] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842214 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222244 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840878 [INFO] [stdout] [Epoch 636] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422127 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222244 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840878 [INFO] [stdout] [Epoch 637] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208613 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422105 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222244 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840877 [INFO] [stdout] [Epoch 638] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208613 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422094 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222244 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840876 [INFO] [stdout] [Epoch 639] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208619 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842208 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222233 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840875 [INFO] [stdout] [Epoch 640] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208619 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842206 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222233 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840874 [INFO] [stdout] [Epoch 641] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208624 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842205 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222233 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408727 [INFO] [stdout] [Epoch 642] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208624 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842204 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222233 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408716 [INFO] [stdout] [Epoch 643] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918422016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408716 [INFO] [stdout] [Epoch 644] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208635 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408705 [INFO] [stdout] [Epoch 645] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208635 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842198 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408693 [INFO] [stdout] [Epoch 646] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120864 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421966 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122221 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840868 [INFO] [stdout] [Epoch 647] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421944 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122221 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840868 [INFO] [stdout] [Epoch 648] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208652 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842192 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840867 [INFO] [stdout] [Epoch 649] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208657 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842191 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840866 [INFO] [stdout] [Epoch 650] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208663 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184219 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222188 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840866 [INFO] [stdout] [Epoch 651] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842188 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222188 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840865 [INFO] [stdout] [Epoch 652] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222188 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840864 [INFO] [stdout] [Epoch 653] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120868 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421833 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222177 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840864 [INFO] [stdout] [Epoch 654] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842182 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222166 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408627 [INFO] [stdout] [Epoch 655] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120869 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842181 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222166 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408627 [INFO] [stdout] [Epoch 656] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208696 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842179 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222155 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408616 [INFO] [stdout] [Epoch 657] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208702 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222166 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408605 [INFO] [stdout] [Epoch 658] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208707 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421755 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222155 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408594 [INFO] [stdout] [Epoch 659] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208713 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421733 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222155 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408594 [INFO] [stdout] [Epoch 660] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208718 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842172 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222144 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840858 [INFO] [stdout] [Epoch 661] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208724 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421694 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840858 [INFO] [stdout] [Epoch 662] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208735 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842167 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840857 [INFO] [stdout] [Epoch 663] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120874 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842165 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222122 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840857 [INFO] [stdout] [Epoch 664] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208752 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842163 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122211 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840856 [INFO] [stdout] [Epoch 665] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421605 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412221 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840856 [INFO] [stdout] [Epoch 666] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421583 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412221 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840856 [INFO] [stdout] [Epoch 667] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208774 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222088 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840855 [INFO] [stdout] [Epoch 668] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842154 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222077 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840855 [INFO] [stdout] [Epoch 669] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208796 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421517 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840855 [INFO] [stdout] [Epoch 670] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208802 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421505 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840855 [INFO] [stdout] [Epoch 671] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421483 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840852 [INFO] [stdout] [Epoch 672] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840851 [INFO] [stdout] [Epoch 673] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184085 [INFO] [stdout] [Epoch 674] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842145 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840849 [INFO] [stdout] [Epoch 675] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842144 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408477 [INFO] [stdout] [Epoch 676] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208807 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842142 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408455 [INFO] [stdout] [Epoch 677] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208807 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184214 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408444 [INFO] [stdout] [Epoch 678] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208807 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184214 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840843 [INFO] [stdout] [Epoch 679] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208807 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842138 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840842 [INFO] [stdout] [Epoch 680] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842138 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840841 [INFO] [stdout] [Epoch 681] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184084 [INFO] [stdout] [Epoch 682] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421344 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840839 [INFO] [stdout] [Epoch 683] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421333 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408377 [INFO] [stdout] [Epoch 684] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842131 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408366 [INFO] [stdout] [Epoch 685] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842131 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408355 [INFO] [stdout] [Epoch 686] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842129 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408344 [INFO] [stdout] [Epoch 687] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842128 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840833 [INFO] [stdout] [Epoch 688] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208824 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840832 [INFO] [stdout] [Epoch 689] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120883 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840832 [INFO] [stdout] [Epoch 690] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208846 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842122 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840832 [INFO] [stdout] [Epoch 691] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208846 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184212 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184083 [INFO] [stdout] [Epoch 692] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184212 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840829 [INFO] [stdout] [Epoch 693] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842118 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408266 [INFO] [stdout] [Epoch 694] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842118 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840824 [INFO] [stdout] [Epoch 695] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208824 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842118 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408227 [INFO] [stdout] [Epoch 696] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120883 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408227 [INFO] [stdout] [Epoch 697] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842114 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408205 [INFO] [stdout] [Epoch 698] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120883 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408194 [INFO] [stdout] [Epoch 699] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120883 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421117 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408194 [INFO] [stdout] [Epoch 700] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840817 [INFO] [stdout] [Epoch 701] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120883 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421095 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840816 [INFO] [stdout] [Epoch 702] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421084 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840816 [INFO] [stdout] [Epoch 703] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840814 [INFO] [stdout] [Epoch 704] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842105 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408116 [INFO] [stdout] [Epoch 705] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120883 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408116 [INFO] [stdout] [Epoch 706] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842103 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408105 [INFO] [stdout] [Epoch 707] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918421017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408094 [INFO] [stdout] [Epoch 708] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840807 [INFO] [stdout] [Epoch 709] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840807 [INFO] [stdout] [Epoch 710] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842097 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840806 [INFO] [stdout] [Epoch 711] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208846 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842095 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840805 [INFO] [stdout] [Epoch 712] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842095 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840803 [INFO] [stdout] [Epoch 713] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208846 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842093 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408016 [INFO] [stdout] [Epoch 714] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842093 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408016 [INFO] [stdout] [Epoch 715] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208852 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408005 [INFO] [stdout] [Epoch 716] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407994 [INFO] [stdout] [Epoch 717] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407966 [INFO] [stdout] [Epoch 718] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208852 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420856 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407955 [INFO] [stdout] [Epoch 719] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208852 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420856 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407944 [INFO] [stdout] [Epoch 720] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208846 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420845 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407933 [INFO] [stdout] [Epoch 721] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208846 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420834 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840791 [INFO] [stdout] [Epoch 722] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208846 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842082 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184079 [INFO] [stdout] [Epoch 723] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842081 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184079 [INFO] [stdout] [Epoch 724] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208852 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842079 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184079 [INFO] [stdout] [Epoch 725] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842078 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840788 [INFO] [stdout] [Epoch 726] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420767 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407866 [INFO] [stdout] [Epoch 727] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420756 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407855 [INFO] [stdout] [Epoch 728] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407844 [INFO] [stdout] [Epoch 729] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842072 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407833 [INFO] [stdout] [Epoch 730] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842071 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840782 [INFO] [stdout] [Epoch 731] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184207 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840781 [INFO] [stdout] [Epoch 732] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184207 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184078 [INFO] [stdout] [Epoch 733] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842068 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840779 [INFO] [stdout] [Epoch 734] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842068 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840778 [INFO] [stdout] [Epoch 735] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407766 [INFO] [stdout] [Epoch 736] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420645 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407755 [INFO] [stdout] [Epoch 737] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208868 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407744 [INFO] [stdout] [Epoch 738] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208874 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842061 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407733 [INFO] [stdout] [Epoch 739] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208874 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184206 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222022 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840772 [INFO] [stdout] [Epoch 740] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208874 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420584 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222022 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840771 [INFO] [stdout] [Epoch 741] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842056 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222022 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184077 [INFO] [stdout] [Epoch 742] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842055 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222022 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407683 [INFO] [stdout] [Epoch 743] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208885 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222022 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840767 [INFO] [stdout] [Epoch 744] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208885 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842052 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122201 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840766 [INFO] [stdout] [Epoch 745] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120889 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122201 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840766 [INFO] [stdout] [Epoch 746] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120889 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122201 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840765 [INFO] [stdout] [Epoch 747] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208896 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122201 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840764 [INFO] [stdout] [Epoch 748] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208902 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840763 [INFO] [stdout] [Epoch 749] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208902 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842045 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840763 [INFO] [stdout] [Epoch 750] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208907 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842043 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407617 [INFO] [stdout] [Epoch 751] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208913 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842042 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221988 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407605 [INFO] [stdout] [Epoch 752] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420406 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221988 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407605 [INFO] [stdout] [Epoch 753] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221977 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407594 [INFO] [stdout] [Epoch 754] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208924 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842036 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221977 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407583 [INFO] [stdout] [Epoch 755] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120893 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842035 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221988 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840757 [INFO] [stdout] [Epoch 756] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208924 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842034 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221988 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840755 [INFO] [stdout] [Epoch 757] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842034 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840753 [INFO] [stdout] [Epoch 758] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208913 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842033 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407517 [INFO] [stdout] [Epoch 759] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208907 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842032 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122201 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407494 [INFO] [stdout] [Epoch 760] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208902 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842032 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122201 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407483 [INFO] [stdout] [Epoch 761] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208896 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842032 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122201 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840746 [INFO] [stdout] [Epoch 762] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208902 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842029 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122201 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840746 [INFO] [stdout] [Epoch 763] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208907 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842027 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840745 [INFO] [stdout] [Epoch 764] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208913 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420256 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840745 [INFO] [stdout] [Epoch 765] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221988 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840745 [INFO] [stdout] [Epoch 766] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120893 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221977 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840744 [INFO] [stdout] [Epoch 767] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208935 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184202 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221977 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840744 [INFO] [stdout] [Epoch 768] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208946 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842018 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221966 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840743 [INFO] [stdout] [Epoch 769] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208952 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221955 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840743 [INFO] [stdout] [Epoch 770] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221955 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840743 [INFO] [stdout] [Epoch 771] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208968 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842011 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407417 [INFO] [stdout] [Epoch 772] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184201 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221933 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407417 [INFO] [stdout] [Epoch 773] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208985 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842008 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221933 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184074 [INFO] [stdout] [Epoch 774] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208985 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842007 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221933 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840739 [INFO] [stdout] [Epoch 775] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842007 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407367 [INFO] [stdout] [Epoch 776] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407356 [INFO] [stdout] [Epoch 777] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407345 [INFO] [stdout] [Epoch 778] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842002 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407333 [INFO] [stdout] [Epoch 779] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842002 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840732 [INFO] [stdout] [Epoch 780] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419996 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184073 [INFO] [stdout] [Epoch 781] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419996 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840729 [INFO] [stdout] [Epoch 782] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840728 [INFO] [stdout] [Epoch 783] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407267 [INFO] [stdout] [Epoch 784] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407256 [INFO] [stdout] [Epoch 785] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407245 [INFO] [stdout] [Epoch 786] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841993 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407234 [INFO] [stdout] [Epoch 787] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841993 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840722 [INFO] [stdout] [Epoch 788] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840721 [INFO] [stdout] [Epoch 789] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184072 [INFO] [stdout] [Epoch 790] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840719 [INFO] [stdout] [Epoch 791] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208985 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841986 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221933 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840719 [INFO] [stdout] [Epoch 792] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208996 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841984 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221922 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840719 [INFO] [stdout] [Epoch 793] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209007 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841982 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122191 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840719 [INFO] [stdout] [Epoch 794] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122191 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840718 [INFO] [stdout] [Epoch 795] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412219 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840718 [INFO] [stdout] [Epoch 796] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120903 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412219 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407167 [INFO] [stdout] [Epoch 797] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120903 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841975 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412219 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407156 [INFO] [stdout] [Epoch 798] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209035 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419735 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412219 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407145 [INFO] [stdout] [Epoch 799] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209035 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419724 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412219 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840713 [INFO] [stdout] [Epoch 800] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120904 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184197 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840713 [INFO] [stdout] [Epoch 801] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120904 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841969 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407117 [INFO] [stdout] [Epoch 802] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209046 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841968 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407106 [INFO] [stdout] [Epoch 803] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209051 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419657 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221877 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407095 [INFO] [stdout] [Epoch 804] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209051 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221877 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407095 [INFO] [stdout] [Epoch 805] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209057 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221877 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407084 [INFO] [stdout] [Epoch 806] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209063 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841961 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221866 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840707 [INFO] [stdout] [Epoch 807] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841959 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221866 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840707 [INFO] [stdout] [Epoch 808] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209074 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841958 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221855 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840706 [INFO] [stdout] [Epoch 809] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120908 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841957 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221855 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840705 [INFO] [stdout] [Epoch 810] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209085 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221855 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840705 [INFO] [stdout] [Epoch 811] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209085 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419524 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840704 [INFO] [stdout] [Epoch 812] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120909 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841951 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840704 [INFO] [stdout] [Epoch 813] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209101 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184195 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221833 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840703 [INFO] [stdout] [Epoch 814] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209107 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841948 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221822 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840703 [INFO] [stdout] [Epoch 815] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209113 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841945 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221822 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407017 [INFO] [stdout] [Epoch 816] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209118 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841943 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122181 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407017 [INFO] [stdout] [Epoch 817] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841942 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122181 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407006 [INFO] [stdout] [Epoch 818] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120913 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407006 [INFO] [stdout] [Epoch 819] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122181 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406984 [INFO] [stdout] [Epoch 820] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209135 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419374 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406984 [INFO] [stdout] [Epoch 821] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840697 [INFO] [stdout] [Epoch 822] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841935 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122181 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840695 [INFO] [stdout] [Epoch 823] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209135 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841934 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840695 [INFO] [stdout] [Epoch 824] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840694 [INFO] [stdout] [Epoch 825] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406917 [INFO] [stdout] [Epoch 826] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209135 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406917 [INFO] [stdout] [Epoch 827] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209146 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406906 [INFO] [stdout] [Epoch 828] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209151 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221789 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406906 [INFO] [stdout] [Epoch 829] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209157 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841925 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406895 [INFO] [stdout] [Epoch 830] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209168 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841923 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406895 [INFO] [stdout] [Epoch 831] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841921 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406884 [INFO] [stdout] [Epoch 832] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841921 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840687 [INFO] [stdout] [Epoch 833] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841918 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840686 [INFO] [stdout] [Epoch 834] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841918 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406845 [INFO] [stdout] [Epoch 835] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840682 [INFO] [stdout] [Epoch 836] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841916 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840681 [INFO] [stdout] [Epoch 837] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184068 [INFO] [stdout] [Epoch 838] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840679 [INFO] [stdout] [Epoch 839] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419124 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840678 [INFO] [stdout] [Epoch 840] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840677 [INFO] [stdout] [Epoch 841] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184191 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406756 [INFO] [stdout] [Epoch 842] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406745 [INFO] [stdout] [Epoch 843] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406734 [INFO] [stdout] [Epoch 844] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406723 [INFO] [stdout] [Epoch 845] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840671 [INFO] [stdout] [Epoch 846] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209174 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184067 [INFO] [stdout] [Epoch 847] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840669 [INFO] [stdout] [Epoch 848] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419013 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840669 [INFO] [stdout] [Epoch 849] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840668 [INFO] [stdout] [Epoch 850] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209185 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841898 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221766 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840667 [INFO] [stdout] [Epoch 851] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209185 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841898 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221766 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406656 [INFO] [stdout] [Epoch 852] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120919 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841896 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221766 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406645 [INFO] [stdout] [Epoch 853] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120919 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418946 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221766 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406634 [INFO] [stdout] [Epoch 854] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209196 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418935 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221755 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406634 [INFO] [stdout] [Epoch 855] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209196 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418913 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221755 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406623 [INFO] [stdout] [Epoch 856] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209207 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221755 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840661 [INFO] [stdout] [Epoch 857] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209207 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418874 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221755 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184066 [INFO] [stdout] [Epoch 858] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418863 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221744 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184066 [INFO] [stdout] [Epoch 859] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209218 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221744 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840659 [INFO] [stdout] [Epoch 860] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841883 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221744 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840658 [INFO] [stdout] [Epoch 861] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221733 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840658 [INFO] [stdout] [Epoch 862] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418797 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221733 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840656 [INFO] [stdout] [Epoch 863] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209235 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418785 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221722 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840656 [INFO] [stdout] [Epoch 864] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120924 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221722 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840655 [INFO] [stdout] [Epoch 865] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209246 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841875 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221722 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840654 [INFO] [stdout] [Epoch 866] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120925 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841873 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122171 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840654 [INFO] [stdout] [Epoch 867] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209257 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841872 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122171 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840653 [INFO] [stdout] [Epoch 868] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209262 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841871 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412217 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840653 [INFO] [stdout] [Epoch 869] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209268 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418685 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412217 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840652 [INFO] [stdout] [Epoch 870] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209274 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418663 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221689 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840652 [INFO] [stdout] [Epoch 871] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120928 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841865 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221678 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406506 [INFO] [stdout] [Epoch 872] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209285 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841863 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221678 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406506 [INFO] [stdout] [Epoch 873] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120929 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418613 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406506 [INFO] [stdout] [Epoch 874] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841859 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406495 [INFO] [stdout] [Epoch 875] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209307 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841857 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221655 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406495 [INFO] [stdout] [Epoch 876] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209312 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418547 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221644 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406484 [INFO] [stdout] [Epoch 877] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209323 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418536 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221644 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406484 [INFO] [stdout] [Epoch 878] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120933 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418525 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221633 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406484 [INFO] [stdout] [Epoch 879] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209335 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221622 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406473 [INFO] [stdout] [Epoch 880] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209346 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841848 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221622 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406473 [INFO] [stdout] [Epoch 881] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120935 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841846 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122161 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406473 [INFO] [stdout] [Epoch 882] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209362 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418436 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412216 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406473 [INFO] [stdout] [Epoch 883] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209368 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418413 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840646 [INFO] [stdout] [Epoch 884] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120938 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184184 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840646 [INFO] [stdout] [Epoch 885] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120939 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841838 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221578 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840646 [INFO] [stdout] [Epoch 886] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841836 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221578 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840645 [INFO] [stdout] [Epoch 887] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841834 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221578 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840643 [INFO] [stdout] [Epoch 888] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841834 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221578 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840642 [INFO] [stdout] [Epoch 889] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120939 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841832 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221578 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406406 [INFO] [stdout] [Epoch 890] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120939 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841832 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406395 [INFO] [stdout] [Epoch 891] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120939 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841831 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406384 [INFO] [stdout] [Epoch 892] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120939 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418297 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406373 [INFO] [stdout] [Epoch 893] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120939 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418286 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840636 [INFO] [stdout] [Epoch 894] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120939 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418275 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840635 [INFO] [stdout] [Epoch 895] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120939 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418264 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122159 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840634 [INFO] [stdout] [Epoch 896] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221578 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840634 [INFO] [stdout] [Epoch 897] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209407 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841823 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840634 [INFO] [stdout] [Epoch 898] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209418 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841821 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840633 [INFO] [stdout] [Epoch 899] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209418 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418197 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840632 [INFO] [stdout] [Epoch 900] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209418 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418186 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406306 [INFO] [stdout] [Epoch 901] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209418 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406295 [INFO] [stdout] [Epoch 902] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209423 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840628 [INFO] [stdout] [Epoch 903] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209423 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841814 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840627 [INFO] [stdout] [Epoch 904] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209423 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841814 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406257 [INFO] [stdout] [Epoch 905] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209423 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841812 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406245 [INFO] [stdout] [Epoch 906] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841811 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406245 [INFO] [stdout] [Epoch 907] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418097 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406234 [INFO] [stdout] [Epoch 908] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209435 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418075 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406223 [INFO] [stdout] [Epoch 909] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209435 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418075 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221544 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840621 [INFO] [stdout] [Epoch 910] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120944 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418047 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221544 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840621 [INFO] [stdout] [Epoch 911] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120944 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418036 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221544 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184062 [INFO] [stdout] [Epoch 912] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209446 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418025 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221544 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840619 [INFO] [stdout] [Epoch 913] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209446 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221533 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840618 [INFO] [stdout] [Epoch 914] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120945 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841799 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221533 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840618 [INFO] [stdout] [Epoch 915] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209457 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841798 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221533 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840617 [INFO] [stdout] [Epoch 916] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209457 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221522 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406157 [INFO] [stdout] [Epoch 917] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209462 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417947 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221522 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406157 [INFO] [stdout] [Epoch 918] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209468 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221522 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406146 [INFO] [stdout] [Epoch 919] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209473 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417914 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122151 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406146 [INFO] [stdout] [Epoch 920] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120948 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417903 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122151 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406134 [INFO] [stdout] [Epoch 921] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120948 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841789 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406123 [INFO] [stdout] [Epoch 922] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209484 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841787 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406123 [INFO] [stdout] [Epoch 923] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120949 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841785 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840611 [INFO] [stdout] [Epoch 924] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417836 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184061 [INFO] [stdout] [Epoch 925] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120949 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840608 [INFO] [stdout] [Epoch 926] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209484 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840608 [INFO] [stdout] [Epoch 927] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120949 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417803 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406057 [INFO] [stdout] [Epoch 928] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417803 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406057 [INFO] [stdout] [Epoch 929] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417775 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406046 [INFO] [stdout] [Epoch 930] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417775 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406034 [INFO] [stdout] [Epoch 931] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417753 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406034 [INFO] [stdout] [Epoch 932] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841773 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406007 [INFO] [stdout] [Epoch 933] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841773 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405996 [INFO] [stdout] [Epoch 934] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841772 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405985 [INFO] [stdout] [Epoch 935] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841771 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840596 [INFO] [stdout] [Epoch 936] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841771 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840596 [INFO] [stdout] [Epoch 937] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417686 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840596 [INFO] [stdout] [Epoch 938] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417664 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840595 [INFO] [stdout] [Epoch 939] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417664 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840593 [INFO] [stdout] [Epoch 940] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841764 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840592 [INFO] [stdout] [Epoch 941] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841764 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405907 [INFO] [stdout] [Epoch 942] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841763 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405896 [INFO] [stdout] [Epoch 943] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841762 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405885 [INFO] [stdout] [Epoch 944] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841762 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405874 [INFO] [stdout] [Epoch 945] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405874 [INFO] [stdout] [Epoch 946] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417575 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840586 [INFO] [stdout] [Epoch 947] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417564 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840585 [INFO] [stdout] [Epoch 948] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417553 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840584 [INFO] [stdout] [Epoch 949] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841754 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840583 [INFO] [stdout] [Epoch 950] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841753 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840582 [INFO] [stdout] [Epoch 951] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841753 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405807 [INFO] [stdout] [Epoch 952] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841751 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405796 [INFO] [stdout] [Epoch 953] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841751 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405785 [INFO] [stdout] [Epoch 954] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841748 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405774 [INFO] [stdout] [Epoch 955] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841747 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stderr] error: test failed, to rerun pass `--lib` [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840576 [INFO] [stdout] [Epoch 956] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841746 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840575 [INFO] [stdout] [Epoch 957] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840574 [INFO] [stdout] [Epoch 958] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417436 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405724 [INFO] [stdout] [Epoch 959] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209523 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417414 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840571 [INFO] [stdout] [Epoch 960] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209523 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417414 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184057 [INFO] [stdout] [Epoch 961] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209523 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841739 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840569 [INFO] [stdout] [Epoch 962] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209523 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841739 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840569 [INFO] [stdout] [Epoch 963] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841737 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840568 [INFO] [stdout] [Epoch 964] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841736 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840567 [INFO] [stdout] [Epoch 965] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209534 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841735 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405657 [INFO] [stdout] [Epoch 966] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209534 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405646 [INFO] [stdout] [Epoch 967] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209534 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417325 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405646 [INFO] [stdout] [Epoch 968] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405635 [INFO] [stdout] [Epoch 969] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841729 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405624 [INFO] [stdout] [Epoch 970] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209546 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841728 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405624 [INFO] [stdout] [Epoch 971] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841726 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840561 [INFO] [stdout] [Epoch 972] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841726 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184056 [INFO] [stdout] [Epoch 973] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209557 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417237 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840559 [INFO] [stdout] [Epoch 974] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417237 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840557 [INFO] [stdout] [Epoch 975] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417237 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405546 [INFO] [stdout] [Epoch 976] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209534 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841722 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405535 [INFO] [stdout] [Epoch 977] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841721 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405524 [INFO] [stdout] [Epoch 978] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209534 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841721 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840551 [INFO] [stdout] [Epoch 979] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184172 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840549 [INFO] [stdout] [Epoch 980] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417187 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840548 [INFO] [stdout] [Epoch 981] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209534 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840548 [INFO] [stdout] [Epoch 982] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417153 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840548 [INFO] [stdout] [Epoch 983] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209546 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841714 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840547 [INFO] [stdout] [Epoch 984] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841712 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840547 [INFO] [stdout] [Epoch 985] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209557 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184171 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405457 [INFO] [stdout] [Epoch 986] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209562 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417087 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405457 [INFO] [stdout] [Epoch 987] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209568 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417076 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840544 [INFO] [stdout] [Epoch 988] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209573 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417053 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221433 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840544 [INFO] [stdout] [Epoch 989] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120958 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841703 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221433 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840544 [INFO] [stdout] [Epoch 990] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120959 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841702 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221422 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840543 [INFO] [stdout] [Epoch 991] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209595 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841701 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840543 [INFO] [stdout] [Epoch 992] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412096 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840543 [INFO] [stdout] [Epoch 993] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416965 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405407 [INFO] [stdout] [Epoch 994] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416965 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412214 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405407 [INFO] [stdout] [Epoch 995] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416937 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405396 [INFO] [stdout] [Epoch 996] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416926 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405374 [INFO] [stdout] [Epoch 997] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405363 [INFO] [stdout] [Epoch 998] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840535 [INFO] [stdout] [Epoch 999] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412096 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416904 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221422 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840534 [INFO] [stdout] [INFO] [stdout] thread 'models::sequential::test_sequential_xor1' (30) panicked at src/models/sequential.rs:242:5: [INFO] [stdout] assertion `left == right` failed [INFO] [stdout] left: [0.0, 0.0, 0.0, 0.0] [INFO] [stdout] right: [0.0, 1.0, 1.0, 0.0] [INFO] [stdout] stack backtrace: [INFO] [stdout] 0: 0x63eefc7486f2 - std::backtrace_rs::backtrace::libunwind::trace::h7cddb8376417e7cc [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/../../backtrace/src/backtrace/libunwind.rs:117:9 [INFO] [stdout] 1: 0x63eefc7486f2 - std::backtrace_rs::backtrace::trace_unsynchronized::hb4e41acf4b349ff1 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/../../backtrace/src/backtrace/mod.rs:66:14 [INFO] [stdout] 2: 0x63eefc7486f2 - std::sys::backtrace::_print_fmt::h1222b80910ba6eb5 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/sys/backtrace.rs:66:9 [INFO] [stdout] 3: 0x63eefc7486f2 - ::fmt::h5bb8a979ba5db788 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/sys/backtrace.rs:39:26 [INFO] [stdout] 4: 0x63eefc7594af - core::fmt::rt::Argument::fmt::h2ee2c138a50a7796 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/fmt/rt.rs:173:76 [INFO] [stdout] 5: 0x63eefc7594af - core::fmt::write::h1e0dbf07fe3990bd [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/fmt/mod.rs:1468:25 [INFO] [stdout] 6: 0x63eefc715e13 - std::io::default_write_fmt::h7d7ad5ed6a883d81 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/io/mod.rs:639:11 [INFO] [stdout] 7: 0x63eefc715e13 - std::io::Write::write_fmt::hc477d9325b345ece [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/io/mod.rs:1954:13 [INFO] [stdout] 8: 0x63eefc721cb2 - std::sys::backtrace::BacktraceLock::print::h788d486777205086 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/sys/backtrace.rs:42:9 [INFO] [stdout] 9: 0x63eefc7266ff - std::panicking::default_hook::{{closure}}::ha7bdfeb5949fc0fa [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:301:27 [INFO] [stdout] 10: 0x63eefc726591 - std::panicking::default_hook::h6dad75ec721846f4 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:325:9 [INFO] [stdout] 11: 0x63eefc6851fe - as core::ops::function::Fn>::call::h33799d04b0b96146 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/alloc/src/boxed.rs:1999:9 [INFO] [stdout] 12: 0x63eefc6851fe - test::test_main_with_exit_callback::{{closure}}::h880e31c829a2eb5d [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/test/src/lib.rs:145:21 [INFO] [stdout] 13: 0x63eefc726e4e - as core::ops::function::Fn>::call::h5e1b8c652ea49180 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/alloc/src/boxed.rs:1999:9 [INFO] [stdout] 14: 0x63eefc726e4e - std::panicking::panic_with_hook::hba00e869ada17676 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:842:13 [INFO] [stdout] 15: 0x63eefc726b6a - std::panicking::panic_handler::{{closure}}::h3d21149c258e5ceb [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:707:13 [INFO] [stdout] 16: 0x63eefc721de9 - std::sys::backtrace::__rust_end_short_backtrace::h4f5d9b9dfb3e6ec1 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/sys/backtrace.rs:174:18 [INFO] [stdout] 17: 0x63eefc70a06d - __rustc[9a7a9f9af7564de1]::rust_begin_unwind [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:698:5 [INFO] [stdout] 18: 0x63eefc761000 - core::panicking::panic_fmt::h78e817a90331d98b [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/panicking.rs:75:14 [INFO] [stdout] 19: 0x63eefc760e03 - core::panicking::assert_failed_inner::he0a3934689115f42 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/panicking.rs:439:17 [INFO] [stdout] 20: 0x63eefc63fee8 - core::panicking::assert_failed::heabc5bf6288a5888 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/panicking.rs:394:5 [INFO] [stdout] 21: 0x63eefc637fc7 - easynn::models::sequential::test_sequential_xor1::h3b0d5e3f7e64b1b9 [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:242:5 [INFO] [stdout] 22: 0x63eefc6383a7 - easynn::models::sequential::test_sequential_xor1::{{closure}}::h9bd7947a7b761e88 [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:205:26 [INFO] [stdout] 23: 0x63eefc634f26 - core::ops::function::FnOnce::call_once::h0bda0d1ad6c702ae [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 24: 0x63eefc684ffb - core::ops::function::FnOnce::call_once::h7f4b4fba903e39d5 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 25: 0x63eefc684ffb - test::__rust_begin_short_backtrace::h9277cb6a2ccfc000 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/test/src/lib.rs:663:18 [INFO] [stdout] 26: 0x63eefc69aaa5 - test::run_test_in_process::{{closure}}::h9aea5ca90d1f4423 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/test/src/lib.rs:686:74 [INFO] [stdout] 27: 0x63eefc69aaa5 - as core::ops::function::FnOnce<()>>::call_once::h364f5fe6cc8afa85 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/panic/unwind_safe.rs:272:9 [INFO] [stdout] 28: 0x63eefc69aaa5 - std::panicking::catch_unwind::do_call::h2b2bec3317fe53ec [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:590:40 [INFO] [stdout] 29: 0x63eefc69aaa5 - std::panicking::catch_unwind::hc3763734156da4af [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:553:19 [INFO] [stdout] 30: 0x63eefc69aaa5 - std::panic::catch_unwind::h28038391e867eabc [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panic.rs:359:14 [INFO] [stdout] 31: 0x63eefc69aaa5 - test::run_test_in_process::had0273166695a036 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/test/src/lib.rs:686:27 [INFO] [stdout] 32: 0x63eefc69aaa5 - test::run_test::{{closure}}::h743d09d4bb476605 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/test/src/lib.rs:607:43 [INFO] [stdout] 33: 0x63eefc6714c4 - test::run_test::{{closure}}::he950b8f9118d37e2 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/test/src/lib.rs:637:41 [INFO] [stdout] 34: 0x63eefc6714c4 - std::sys::backtrace::__rust_begin_short_backtrace::hbfaffa6539f6abb7 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/sys/backtrace.rs:158:18 [INFO] [stdout] 35: 0x63eefc674daa - std::thread::Builder::spawn_unchecked_::{{closure}}::{{closure}}::hcce3c2c65b9c3b20 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/thread/mod.rs:559:17 [INFO] [stdout] 36: 0x63eefc674daa - as core::ops::function::FnOnce<()>>::call_once::hb66b30b6d37985a5 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/panic/unwind_safe.rs:272:9 [INFO] [stdout] 37: 0x63eefc674daa - std::panicking::catch_unwind::do_call::h992bbe2c32dc1d79 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:590:40 [INFO] [stdout] 38: 0x63eefc674daa - std::panicking::catch_unwind::h412991d5237de610 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panicking.rs:553:19 [INFO] [stdout] 39: 0x63eefc674daa - std::panic::catch_unwind::ha82b139b3eb5840a [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/panic.rs:359:14 [INFO] [stdout] 40: 0x63eefc674daa - std::thread::Builder::spawn_unchecked_::{{closure}}::ha823b36f5114938e [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/thread/mod.rs:557:30 [INFO] [stdout] 41: 0x63eefc674daa - core::ops::function::FnOnce::call_once{{vtable.shim}}::hf120e7b1db22ac07 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 42: 0x63eefc71bf8f - as core::ops::function::FnOnce>::call_once::h3e049222c99298ac [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/alloc/src/boxed.rs:1985:9 [INFO] [stdout] 43: 0x63eefc71bf8f - std::sys::pal::unix::thread::Thread::new::thread_start::h942e336943ad5963 [INFO] [stdout] at /rustc/cdb45c87e2cd43495379f7e867e3cc15dcee9f93/library/std/src/sys/pal/unix/thread.rs:118:17 [INFO] [stdout] 44: 0x722b4a5fbaa4 - [INFO] [stdout] 45: 0x722b4a688a34 - clone [INFO] [stdout] 46: 0x0 - [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] models::sequential::test_sequential_xor1 [INFO] [stdout] [INFO] [stdout] test result: FAILED. 6 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 1.04s [INFO] [stdout] [INFO] running `Command { std: "docker" "inspect" "9057c4c09128ff001bf91f81bd71a0b0ee04e8c0445bbf9da09c75d054fc1fdc", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "9057c4c09128ff001bf91f81bd71a0b0ee04e8c0445bbf9da09c75d054fc1fdc", kill_on_drop: false }` [INFO] [stdout] 9057c4c09128ff001bf91f81bd71a0b0ee04e8c0445bbf9da09c75d054fc1fdc