[INFO] fetching crate easynn 0.1.7-beta... [INFO] testing easynn-0.1.7-beta against try#b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b for pr-145330-1 [INFO] extracting crate easynn 0.1.7-beta into /workspace/builds/worker-7-tc2/source [INFO] started tweaking crates.io crate easynn 0.1.7-beta [INFO] finished tweaking crates.io crate easynn 0.1.7-beta [INFO] tweaked toml for crates.io crate easynn 0.1.7-beta written to /workspace/builds/worker-7-tc2/source/Cargo.toml [INFO] validating manifest of crates.io crate easynn 0.1.7-beta on toolchain b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b" "metadata" "--manifest-path" "Cargo.toml" "--no-deps", kill_on_drop: false }` [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b" "generate-lockfile" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] [stderr] Updating crates.io index [INFO] [stderr] Locking 28 packages to latest compatible versions [INFO] [stderr] Adding itertools v0.10.5 (available: v0.14.0) [INFO] [stderr] Adding rand v0.8.5 (available: v0.9.2) [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b" "fetch" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-7-tc2/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-7-tc2/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:e90291280db7d1fac5b66fc6dad9f9662629e7365a55743daf9bdf73ebc4ea79" "/opt/rustwide/cargo-home/bin/cargo" "+b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b" "metadata" "--no-deps" "--format-version=1", kill_on_drop: false }` [INFO] [stdout] 42f46780a6c02dc6ae21179e8fd8ec1c5a1043e9d4ce6c98e35e60347d32280a [INFO] running `Command { std: "docker" "start" "-a" "42f46780a6c02dc6ae21179e8fd8ec1c5a1043e9d4ce6c98e35e60347d32280a", kill_on_drop: false }` [INFO] running `Command { std: "docker" "inspect" "42f46780a6c02dc6ae21179e8fd8ec1c5a1043e9d4ce6c98e35e60347d32280a", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "42f46780a6c02dc6ae21179e8fd8ec1c5a1043e9d4ce6c98e35e60347d32280a", kill_on_drop: false }` [INFO] [stdout] 42f46780a6c02dc6ae21179e8fd8ec1c5a1043e9d4ce6c98e35e60347d32280a [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-7-tc2/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-7-tc2/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:e90291280db7d1fac5b66fc6dad9f9662629e7365a55743daf9bdf73ebc4ea79" "/opt/rustwide/cargo-home/bin/cargo" "+b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b" "build" "--frozen" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] f7b37dc7a74816cc9d408b0caf779daebc1d60e8810ba61ccda5bee816b10ebc [INFO] running `Command { std: "docker" "start" "-a" "f7b37dc7a74816cc9d408b0caf779daebc1d60e8810ba61ccda5bee816b10ebc", kill_on_drop: false }` [INFO] [stderr] Compiling crossbeam-utils v0.8.21 [INFO] [stderr] Compiling zerocopy v0.8.27 [INFO] [stderr] Compiling autocfg v1.5.0 [INFO] [stderr] Compiling rayon-core v1.13.0 [INFO] [stderr] Compiling itertools v0.10.5 [INFO] [stderr] Compiling getrandom v0.2.16 [INFO] [stderr] Compiling num_cpus v1.17.0 [INFO] [stderr] Compiling rand_core v0.6.4 [INFO] [stderr] Compiling num-traits v0.2.19 [INFO] [stderr] Compiling crossbeam-epoch v0.9.18 [INFO] [stderr] Compiling crossbeam-channel v0.5.15 [INFO] [stderr] Compiling crossbeam-queue v0.3.12 [INFO] [stderr] Compiling crossbeam-deque v0.8.6 [INFO] [stderr] Compiling crossbeam v0.8.4 [INFO] [stderr] Compiling rayon v1.11.0 [INFO] [stderr] Compiling ppv-lite86 v0.2.21 [INFO] [stderr] Compiling rand_chacha v0.3.1 [INFO] [stderr] Compiling rand v0.8.5 [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `dev` profile [unoptimized + debuginfo] target(s) in 11.87s [INFO] running `Command { std: "docker" "inspect" "f7b37dc7a74816cc9d408b0caf779daebc1d60e8810ba61ccda5bee816b10ebc", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "f7b37dc7a74816cc9d408b0caf779daebc1d60e8810ba61ccda5bee816b10ebc", kill_on_drop: false }` [INFO] [stdout] f7b37dc7a74816cc9d408b0caf779daebc1d60e8810ba61ccda5bee816b10ebc [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-7-tc2/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-7-tc2/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:e90291280db7d1fac5b66fc6dad9f9662629e7365a55743daf9bdf73ebc4ea79" "/opt/rustwide/cargo-home/bin/cargo" "+b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b" "test" "--frozen" "--no-run" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] 41518bb9628fd909198754119dea78a05bdc78cd9a560b5fd71cc345371b4679 [INFO] running `Command { std: "docker" "start" "-a" "41518bb9628fd909198754119dea78a05bdc78cd9a560b5fd71cc345371b4679", kill_on_drop: false }` [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stdout] --> src/models/sequential.rs:180:9 [INFO] [stdout] | [INFO] [stdout] 180 | use crate::layers::activation::Activation::*; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `rand::Rng` [INFO] [stdout] --> src/models/sequential.rs:207:9 [INFO] [stdout] | [INFO] [stdout] 207 | use rand::Rng; [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `test` profile [unoptimized + debuginfo] target(s) in 0.97s [INFO] running `Command { std: "docker" "inspect" "41518bb9628fd909198754119dea78a05bdc78cd9a560b5fd71cc345371b4679", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "41518bb9628fd909198754119dea78a05bdc78cd9a560b5fd71cc345371b4679", kill_on_drop: false }` [INFO] [stdout] 41518bb9628fd909198754119dea78a05bdc78cd9a560b5fd71cc345371b4679 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-7-tc2/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-7-tc2/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:e90291280db7d1fac5b66fc6dad9f9662629e7365a55743daf9bdf73ebc4ea79" "/opt/rustwide/cargo-home/bin/cargo" "+b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b" "test" "--frozen", kill_on_drop: false }` [INFO] [stdout] 4d878cd55fa22989bd57c9434777cbcf780dc508fb33eedf423d9bad7eb6a5ee [INFO] running `Command { std: "docker" "start" "-a" "4d878cd55fa22989bd57c9434777cbcf780dc508fb33eedf423d9bad7eb6a5ee", kill_on_drop: false }` [INFO] [stderr] warning: unused variable: `olen` [INFO] [stderr] --> src/layers/dense.rs:96:13 [INFO] [stderr] | [INFO] [stderr] 96 | let olen = output.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_variables)]` on by default [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:148:13 [INFO] [stderr] | [INFO] [stderr] 148 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:205:13 [INFO] [stderr] | [INFO] [stderr] 205 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:137:17 [INFO] [stderr] | [INFO] [stderr] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_mut)]` on by default [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:146:17 [INFO] [stderr] | [INFO] [stderr] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] [INFO] [stderr] warning: function `determine_thread` is never used [INFO] [stderr] --> src/layers/dense.rs:18:4 [INFO] [stderr] | [INFO] [stderr] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stderr] | ^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(dead_code)]` on by default [INFO] [stderr] [INFO] [stderr] warning: method `pos2index` is never used [INFO] [stderr] --> src/tensor/mod.rs:38:19 [INFO] [stderr] | [INFO] [stderr] 26 | impl Tensor { [INFO] [stderr] | ----------------------- method in this implementation [INFO] [stderr] ... [INFO] [stderr] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stderr] --> src/models/sequential.rs:180:9 [INFO] [stderr] | [INFO] [stderr] 180 | use crate::layers::activation::Activation::*; [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_imports)]` on by default [INFO] [stderr] [INFO] [stderr] warning: unused import: `rand::Rng` [INFO] [stderr] --> src/models/sequential.rs:207:9 [INFO] [stderr] | [INFO] [stderr] 207 | use rand::Rng; [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: `easynn` (lib) generated 7 warnings (run `cargo fix --lib -p easynn` to apply 2 suggestions) [INFO] [stderr] warning: `easynn` (lib test) generated 9 warnings (7 duplicates) (run `cargo fix --lib -p easynn --tests` to apply 2 suggestions) [INFO] [stderr] Finished `test` profile [unoptimized + debuginfo] target(s) in 0.06s [INFO] [stderr] Running unittests src/lib.rs (/opt/rustwide/target/debug/deps/easynn-867cd2ac072b2970) [INFO] [stdout] [INFO] [stdout] running 7 tests [INFO] [stdout] test layers::dense::test_add_weight_delta_to ... ok [INFO] [stdout] test layers::dense::test_dense_activate ... ok [INFO] [stdout] test layers::dense::test_dense_descend ... ok [INFO] [stdout] test models::sequential::test_sequential_predict ... ok [INFO] [stdout] test layers::dense::test_dense_forward ... ok [INFO] [stdout] test layers::dense::test_dense_backpropagate ... ok [INFO] [stdout] test models::sequential::test_sequential_xor1 ... FAILED [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] [INFO] [stdout] ---- models::sequential::test_sequential_xor1 stdout ---- [INFO] [stdout] [Epoch 0] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 1 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.9604007360760156 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0015681308515308192 [INFO] [stdout] [Epoch 1] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0015060328698101987 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.9253834208954357 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8887382374279764 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.005795082564878488 [INFO] [stdout] [Epoch 2] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0055655972953093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8591234551251915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8251021663022339 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.012059483951006953 [INFO] [stdout] [Epoch 3] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.011581928386547077 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8001893225800982 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.7685018254059263 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.01985012968907652 [INFO] [stdout] [Epoch 4] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.019064064553389094 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7476866776999913 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.7180782852630717 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.028748186047813092 [INFO] [stdout] [Epoch 5] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.02760975788031969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7008392003019939 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6730859679700348 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0384121572425026 [INFO] [stdout] [Epoch 6] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0368910358156995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6589721807800382 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6328768824211487 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.04856519228194336 [INFO] [stdout] [Epoch 7] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.04664201066757841 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6214984619228952 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5968871228307485 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.05898437549405702 [INFO] [stdout] [Epoch 8] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.05664859422449236 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5879063928818016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5646252997236823 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.06949169775237385 [INFO] [stdout] [Epoch 9] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.06673982652137984 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5577495016653345 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5356626213993874 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.07994645117982858 [INFO] [stdout] [Epoch 10] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.07678057171310737 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5306376358410906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5096243854617832 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.09023882899048029 [INFO] [stdout] [Epoch 11] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.08666537136245725 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5062293580035626 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.48618267542662136 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1002845451724122 [INFO] [stdout] [Epoch 12] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.09631327718358468 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.48422541398066 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4650500875870258 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11002031679094676 [INFO] [stdout] [Epoch 13] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.10566351224602527 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4643631185105414 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4459743390175239 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11940007554440982 [INFO] [stdout] [Epoch 14] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.11467183255285118 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4464115259177168 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4287336294913753 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.128391795467743 [INFO] [stdout] [Epoch 15] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.12330748036722036 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.43016727274153965 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4131326487409747 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1369748408904066 [INFO] [stdout] [Epoch 16] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1315506371911465 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.41545099582236966 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3989991363878038 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.14513775337186835 [INFO] [stdout] [Epoch 17] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.13939029833834238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.40210424345740925 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.38618091541649574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1528764087496947 [INFO] [stdout] [Epoch 18] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.14682250296320676 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3899868092624859 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.37454333161569153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1601924859727862 [INFO] [stdout] [Epoch 19] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.15384886352826385 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.378974428626916 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.36396704125329005 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.16709219833702557 [INFO] [stdout] [Epoch 20] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16047534728287938 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.36895678638903917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3543460976480333 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.17358524533180833 [INFO] [stdout] [Epoch 21] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16671126961666874 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3598357918139766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3455862944581432 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.17968394974704818 [INFO] [stdout] [Epoch 22] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1725684653370651 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3515240833132278 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3376037296140241 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1854025501542572 [INFO] [stdout] [Epoch 23] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.17806060916814861 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3439437307701662 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.33032355903166755 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.19075662350925032 [INFO] [stdout] [Epoch 24] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.183202661218284 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3370251079644467 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3236789136890545 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.19576261655292537 [INFO] [stdout] [Epoch 25] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1880104169374295 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.33070591153944984 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3176099574424876 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20043746801668716 [INFO] [stdout] [Epoch 26] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.19250014428322637 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3249303063302899 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.31206306619961044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20479830646074942 [INFO] [stdout] [Epoch 27] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.19668829352490372 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.31964817975090665 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.30699011183277086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20886221096352767 [INFO] [stdout] [Epoch 28] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.200591267409372 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.31481449039997583 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.30234783658013686 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21264602390387705 [INFO] [stdout] [Epoch 29] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20422524135728348 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3103886981486531 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.29809730570196635 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2161662067904756 [INFO] [stdout] [Epoch 30] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20760602500157277 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3063342647712179 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2942034278862778 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21943873154131807 [INFO] [stdout] [Epoch 31] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21074895777228186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3026182157173763 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2906345343749681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22247900084108863 [INFO] [stdout] [Epoch 32] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2136688324077815 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.299210754940548 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.28736200904490233 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22530179223913566 [INFO] [stdout] [Epoch 33] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2163798412664659 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29608492582249785 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.284359962759927 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22792122152474908 [INFO] [stdout] [Epoch 34] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.218895541152369 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2932163121989086 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.28160494623583177 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23035072165397596 [INFO] [stdout] [Epoch 35] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22122883307647853 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29058277431661445 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2790756964536766 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23260303412413308 [INFO] [stdout] [Epoch 36] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22339195397281741 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28816421526137265 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27675291233702226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23469021021616623 [INFO] [stdout] [Epoch 37] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22539647789160605 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28594237400243294 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27461905599193653 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2366236199660807 [INFO] [stdout] [Epoch 38] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22725332461542389 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28390064172144863 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27265817630927924 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2384139670975638 [INFO] [stdout] [Epoch 39] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22897277400050026 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28202389854092574 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27085575215870505 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24007130845945254 [INFO] [stdout] [Epoch 40] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23056448464445822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28029836815212017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2691985527732963 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24160507677303467 [INFO] [stdout] [Epoch 41] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2320375157328225 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2787114881731484 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2676745132414917 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24302410571309144 [INFO] [stdout] [Epoch 42] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.233400351126853 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2772517943528271 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2662726232964551 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24433665652968967 [INFO] [stdout] [Epoch 43] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23466092493111398 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27590881698105224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2649828278286026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24555044557059705 [INFO] [stdout] [Epoch 44] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2358266479260014 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27467298807799534 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2637959377501068 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2466726721915695 [INFO] [stdout] [Epoch 45] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23690443437278336 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27353555811687824 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26270355001544987 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24771004664765314 [INFO] [stdout] [Epoch 46] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23790072880040605 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2724885211927224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26169797575349063 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2486688176464513 [INFO] [stdout] [Epoch 47] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23882153246765184 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27152454768575274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26077217559739696 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24955479931691135 [INFO] [stdout] [Epoch 48] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23967242926396165 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27063692358611496 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2599197014121049 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2503733974070111 [INFO] [stdout] [Epoch 49] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24045861086969347 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2698194957487927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25913464371714057 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2511296345728364 [INFO] [stdout] [Epoch 50] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24118490104375204 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26906662243630197 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25841158418782434 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25182817466166973 [INFO] [stdout] [Epoch 51] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24185577894506766 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2683731285837839 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25774555269186616 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2524733459243309 [INFO] [stdout] [Epoch 52] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24247540142572743 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2677342652881207 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2571319883827112 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25306916311835426 [INFO] [stdout] [Epoch 53] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24304762425886745 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2671456730810515 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2565667044270419 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25361934848471207 [INFO] [stdout] [Epoch 54] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24357602228471745 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2666033485971597 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2560458559927121 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2541273515975624 [INFO] [stdout] [Epoch 55] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24406390847429896 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2661036142920406 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2555659111660758 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2545963680996709 [INFO] [stdout] [Epoch 56] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2445143519229239 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.265643090904829 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2551236245049978 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2550293573463419 [INFO] [stdout] [Epoch 57] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24493019479542674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26521867239330693 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25471601296653196 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2554290589884246 [INFO] [stdout] [Epoch 58] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24531406825248303 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2648275030996779 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2543403339769307 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2557980085306708 [INFO] [stdout] [Epoch 59] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24566840739285623 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2644669569313299 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2539940654368492 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25613855190578 [INFO] [stdout] [Epoch 60] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24599546525031107 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2641346183639939 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2536748874767798 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25645285910719284 [INFO] [stdout] [Epoch 61] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24629732588654804 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.263828265095057 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2533806657972929 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2567429369253229 [INFO] [stdout] [Epoch 62] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24657591662308015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2635458521927499 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25310943644591705 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25701064083268554 [INFO] [stdout] [Epoch 63] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2468330194557112 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26328549760281117 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25285939189774 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25725768606345795 [INFO] [stdout] [Epoch 64] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24707028169534503 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2630454688883017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25262886832032483 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2574856579325323 [INFO] [stdout] [Epoch 65] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24728922587840402 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2628241710907155 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2524163339155232 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25769602143823317 [INFO] [stdout] [Epoch 66] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24749125898927915 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2626201356116312 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2522203782414105 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.257890130191665 [INFO] [stdout] [Epoch 67] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24767768103607507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2624320100240054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2520397024270548 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25806923471420007 [INFO] [stdout] [Epoch 68] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24784969301951779 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26225854873101717 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2518731102012689 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25823449014300714 [INFO] [stdout] [Epoch 69] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2480084043333441 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2620986043982212 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2517194996640517 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25838696338278616 [INFO] [stdout] [Epoch 70] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24815483963282783 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26195112009179194 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.251577855736157 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2585276397400747 [INFO] [stdout] [Epoch 71] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2482899452063677 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26181512206193236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2514472432282799 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2586574290746583 [INFO] [stdout] [Epoch 72] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24841459488330184 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2616897131161622 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2513268004767622 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25877717150077684 [INFO] [stdout] [Epoch 73] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24852959550934606 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26157406653226817 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2512157334975902 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2588876426689952 [INFO] [stdout] [Epoch 74] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.248635692019303 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26146742046525834 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25111331061483405 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25898955865782386 [INFO] [stdout] [Epoch 75] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24873357213497402 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2613690728067679 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25101885752361996 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2590835805024279 [INFO] [stdout] [Epoch 76] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24882387071453177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26127837645906804 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25093175275128893 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2591703183860895 [INFO] [stdout] [Epoch 77] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24890717377800034 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26119473498917245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25085142348360134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25925033551846377 [INFO] [stdout] [Epoch 78] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24898402223193264 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2611175986315656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2507773417257556 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25932415172312684 [INFO] [stdout] [Epoch 79] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24905491531489105 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2610464606108067 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25070902077061874 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2593922467554353 [INFO] [stdout] [Epoch 80] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24912031378392005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26098085375775426 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2506460119489472 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25945506337031865 [INFO] [stdout] [Epoch 81] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24918064286085403 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26092034739539866 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25058790163854094 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25951301015829675 [INFO] [stdout] [Epoch 82] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24923629495602823 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26086454447234325 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2505343085112385 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25956646416676404 [INFO] [stdout] [Epoch 83] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2492876321857602 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26081307892382727 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2504848809984437 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25961577332239794 [INFO] [stdout] [Epoch 84] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249334988698831 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2607656132418798 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25043929495750133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2596612586694445 [INFO] [stdout] [Epoch 85] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24937867282613452 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2607218362377328 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25039725152271863 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.259703216437584 [INFO] [stdout] [Epoch 86] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24941896906665564 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2606814609810277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25035847512617904 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2597419199521114 [INFO] [stdout] [Epoch 87] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24945613992200777 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260644222901628 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25032271167472353 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25977762139824584 [INFO] [stdout] [Epoch 88] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24949042759087528 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2606098780410265 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25028972687060186 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2598105534505331 [INFO] [stdout] [Epoch 89] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24952205553389198 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26057820144139743 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25025930466431806 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2598409307775068 [INFO] [stdout] [Epoch 90] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24955122991871753 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2605489856613252 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25023124582913686 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25986895143103067 [INFO] [stdout] [Epoch 91] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24957814095436184 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26052203940813584 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25020536664757365 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2598947981290515 [INFO] [stdout] [Epoch 92] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249602964123141 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26049718627757146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501814977009797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599186394398489 [INFO] [stdout] [Epoch 93] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24962586131803083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604742635923028 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25015948275404754 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25994063087526703 [INFO] [stdout] [Epoch 94] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24964698189260645 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604531213314554 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501391777267297 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599609158998583 [INFO] [stdout] [Epoch 95] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24966646363022393 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604336211439597 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.250120449746659 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599796268623489 [INFO] [stdout] [Epoch 96] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24968443363859988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26041563543910967 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25010317627572093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599968858553589 [INFO] [stdout] [Epoch 97] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24970100917548668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603990465482431 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500872443049327 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600128055088614 [INFO] [stdout] [Epoch 98] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497162984107105 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26038374595194713 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25007254961225006 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600274897224529 [INFO] [stdout] [Epoch 99] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24973040112944372 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603696335676338 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25005899607835547 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26004103434112397 [INFO] [stdout] [Epoch 100] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24974340938121545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260356617092744 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500464950558713 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600535277788659 [INFO] [stdout] [Epoch 101] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24975540807882282 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603446113992117 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25003496478780296 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26006505159411597 [INFO] [stdout] [Epoch 102] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249766475550989 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603335379751714 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500243298713546 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26007568102074513 [INFO] [stdout] [Epoch 103] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24977668405232362 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26032332441020234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25001452076355823 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600854854580062 [INFO] [stdout] [Epoch 104] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24978610023386916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26031390392070386 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25000547332544404 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600945289226019 [INFO] [stdout] [Epoch 105] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24979478557726684 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26030521491225905 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24999712840173366 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26010287046578945 [INFO] [stdout] [Epoch 106] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24980279679534417 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602972005760952 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24998943143328176 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26011056455821757 [INFO] [stdout] [Epoch 107] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498101862017122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26028980851697453 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24998233209970222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601176614449825 [INFO] [stdout] [Epoch 108] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498170020517612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26028299041006153 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24997578398982312 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26012420747320214 [INFO] [stdout] [Epoch 109] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24982328885726332 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260276701684503 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499697442977967 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601302453942297 [INFO] [stdout] [Epoch 110] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498290876766182 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26027090123163515 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499641735428624 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601358146424637 [INFO] [stdout] [Epoch 111] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24983443638262215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602655511358987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24995903531091715 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260140951592564 [INFO] [stdout] [Epoch 112] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24983936990949843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602606164266896 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24995429601619262 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26014568979674224 [INFO] [stdout] [Epoch 113] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24984392048079124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602560648495115 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994992468147098 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015006020366743 [INFO] [stdout] [Epoch 114] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498481178196022 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26025186665493066 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499458927353955 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015409136040807 [INFO] [stdout] [Epoch 115] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498519893425359 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26024799440393964 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994217382554365 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015780959872287 [INFO] [stdout] [Epoch 116] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985556033861342 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602444227884578 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499387436460349 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016123920691286 [INFO] [stdout] [Epoch 117] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498588541343191 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602411284657859 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993557977854072 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601644025883501 [INFO] [stdout] [Epoch 118] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986189224585142 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602380899059301 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993266154565533 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016732040771623 [INFO] [stdout] [Epoch 119] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986469451957066 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602352872507939 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992996987566246 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017001172590226 [INFO] [stdout] [Epoch 120] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498672792615565 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26023270218431255 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992748717781374 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601724941244467 [INFO] [stdout] [Epoch 121] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986966335711863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602303178126817 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992519722729953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017478382032383 [INFO] [stdout] [Epoch 122] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987186238103903 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602281185538922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992308505915814 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017689577182945 [INFO] [stdout] [Epoch 123] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987389069926505 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022609003584835 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992113687042875 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017884377625317 [INFO] [stdout] [Epoch 124] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987576156271357 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602242190024021 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991933992990692 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018064055997453 [INFO] [stdout] [Epoch 125] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498774871937995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602224932266882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499176824949115 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018229786156993 [INFO] [stdout] [Epoch 126] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987907886625177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022090143119203 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991615373451695 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601838265084727 [INFO] [stdout] [Epoch 127] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988054697873716 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602194332140256 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991474365875013 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601852364876848 [INFO] [stdout] [Epoch 128] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498819011227725 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602180789809313 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499134430532864 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601865370110034 [INFO] [stdout] [Epoch 129] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498831501453677 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260216829882568 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991224341921833 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018773657518546 [INFO] [stdout] [Epoch 130] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498843022068081 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021567775666693 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991113691750297 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601888430174444 [INFO] [stdout] [Epoch 131] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498853648339536 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602146150746807 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499101163177233 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601898635666407 [INFO] [stdout] [Epoch 132] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498863449694017 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021363489257604 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499091749508301 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601908048904994 [INFO] [stdout] [Epoch 133] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988724901683565 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602127308054486 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990830666555278 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601916731391646 [INFO] [stdout] [Epoch 134] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988808288285366 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602118969056607 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990750578819654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601924739853726 [INFO] [stdout] [Epoch 135] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988885201555186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602111277442324 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990676708556073 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019321266150863 [INFO] [stdout] [Epoch 136] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498895614401129 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602104182952287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990608573073775 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601938939937866 [INFO] [stdout] [Epoch 137] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989021579163267 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602097639229143 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990545727156682 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601945224337771 [INFO] [stdout] [Epoch 138] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989081934539958 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020916035145586 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990487760153818 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019510208748775 [INFO] [stdout] [Epoch 139] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989137604482323 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260208603636981 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499043429329565 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019563674218665 [INFO] [stdout] [Epoch 140] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989188952719601 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602080901418031 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499038497721877 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601961298911445 [INFO] [stdout] [Epoch 141] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989236314745522 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602076165106499 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990339489682814 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601965847564557 [INFO] [stdout] [Epoch 142] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989280000010003 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602071796487368 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499029753346468 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601970043100883 [INFO] [stdout] [Epoch 143] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989320293940884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020677670154285 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990258834416176 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601973912933004 [INFO] [stdout] [Epoch 144] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498935745980857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602064050361577 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990223139672585 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601977482345487 [INFO] [stdout] [Epoch 145] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498939174044606 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602060622240756 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990190216000216 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019807746600826 [INFO] [stdout] [Epoch 146] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498942335983543 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602057460253264 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990159848272345 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601983811388084 [INFO] [stdout] [Epoch 147] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498945252457116 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020545437383824 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990131838063426 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601986612370874 [INFO] [stdout] [Epoch 148] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989479425209876 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020518536393666 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990106002352483 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019891959095537 [INFO] [stdout] [Epoch 149] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989504237515353 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260204937237892 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990082172327152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601991578884508 [INFO] [stdout] [Epoch 150] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989527123606817 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602047083744336 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990060192280614 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019937768657 [INFO] [stdout] [Epoch 151] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498954823301818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260204497278156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249900399185941 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260199580421439 [INFO] [stdout] [Epoch 152] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989567703675003 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020430256974664 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499002121879846 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601997674176972 [INFO] [stdout] [Epoch 153] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989585662795638 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602041229769738 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990003970708577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019993989715134 [INFO] [stdout] [Epoch 154] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989602227722416 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602039573263735 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989988061624913 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602000989867587 [INFO] [stdout] [Epoch 155] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989617506688308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602038045355808 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989973387597186 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020024572599026 [INFO] [stdout] [Epoch 156] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989631599524104 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020366360625835 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989959852745056 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602003810736219 [INFO] [stdout] [Epoch 157] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989644598310648 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602035336175723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989947368631638 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602005059139993 [INFO] [stdout] [Epoch 158] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498965658798049 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602034137201758 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989935853685685 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020062106281483 [INFO] [stdout] [Epoch 159] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989667646872737 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020330313065937 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989925232668522 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020072727243865 [INFO] [stdout] [Epoch 160] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989677847245004 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602032011264314 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989915436182475 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602008252368331 [INFO] [stdout] [Epoch 161] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498968725574545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020310704099703 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989906400217357 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020091559608777 [INFO] [stdout] [Epoch 162] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498969593384827 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602030202596031 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989898065732283 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602009989406011 [INFO] [stdout] [Epoch 163] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498970393825533 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602029402152214 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989890378269852 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602010758149384 [INFO] [stdout] [Epoch 164] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989711321266686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602028663848431 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989883287600334 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020114672138944 [INFO] [stdout] [Epoch 165] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989718131122243 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020279828606224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498987674739342 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602012121232508 [INFO] [stdout] [Epoch 166] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989724412317005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020273547392303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498987071491557 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602012724478526 [INFO] [stdout] [Epoch 167] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989730205891766 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602026775380124 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989865150750717 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602013280893508 [INFO] [stdout] [Epoch 168] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498973554970125 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020262409977896 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989860018542764 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602013794113024 [INFO] [stdout] [Epoch 169] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989740478661485 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602025748100586 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989855284758028 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020142674904095 [INFO] [stdout] [Epoch 170] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498974502497789 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020252934679405 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498985091846611 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020147041186753 [INFO] [stdout] [Epoch 171] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989749218355756 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020248741293006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249898468911378 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020151068507186 [INFO] [stdout] [Epoch 172] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897530861943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202448734472 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989843176458684 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020154783179594 [INFO] [stdout] [Epoch 173] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989756653765682 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020241305869635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989839750157192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015820947539 [INFO] [stdout] [Epoch 174] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989759944380166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020238015249897 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989836589846 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016136978173 [INFO] [stdout] [Epoch 175] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989762979538374 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602023498008721 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989833674875764 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016428474785 [INFO] [stdout] [Epoch 176] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498976577907183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020232180549957 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498983098620017 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016697341992 [INFO] [stdout] [Epoch 177] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989768361272494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020229598346045 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989828506251538 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016945336557 [INFO] [stdout] [Epoch 178] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989770743012296 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022721660348 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989826218825986 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020171740788584 [INFO] [stdout] [Epoch 179] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989772939853358 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022501976009 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498982410897758 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020173850634826 [INFO] [stdout] [Epoch 180] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498977496614969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020222993461756 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989822162920675 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020175796689893 [INFO] [stdout] [Epoch 181] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989776835140975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020221124468784 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989820367939816 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020177591669186 [INFO] [stdout] [Epoch 182] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989778559039086 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021940056922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989818712306683 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020179247300984 [INFO] [stdout] [Epoch 183] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989780149107868 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021781049921 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989817185203442 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020180774403096 [INFO] [stdout] [Epoch 184] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989781615736734 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020216343869296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989815776652075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020182182953505 [INFO] [stdout] [Epoch 185] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989782968508545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021499109661 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989814477449176 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018348215558 [INFO] [stdout] [Epoch 186] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989784216262217 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020213743342174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981327910583 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018468049823 [INFO] [stdout] [Epoch 187] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989785367150505 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021259245324 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989812173792098 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018578581137 [INFO] [stdout] [Epoch 188] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989786428693242 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020211530909954 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981115428592 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020186805317036 [INFO] [stdout] [Epoch 189] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978740782648 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020210551776257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981021392592 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018774567661 [INFO] [stdout] [Epoch 190] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978831094782 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020964865452 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249898093465678 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018861303436 [INFO] [stdout] [Epoch 191] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989789143958202 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020881564379 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980854654431 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018941305755 [INFO] [stdout] [Epoch 192] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989789912300472 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020208047301246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807808628117 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019015097347 [INFO] [stdout] [Epoch 193] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989790620994926 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020733860655 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807127997732 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019083160363 [INFO] [stdout] [Epoch 194] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989791274672127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020206684929137 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989806500205938 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019145939524 [INFO] [stdout] [Epoch 195] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989791877603185 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020206081997904 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989805921150787 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020192038450224 [INFO] [stdout] [Epoch 196] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792433727598 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020552587333 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989805387048752 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019257255212 [INFO] [stdout] [Epoch 197] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792946679057 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020501292176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804894410048 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020193065190705 [INFO] [stdout] [Epoch 198] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979341980916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020453979154 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804440015792 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019351958486 [INFO] [stdout] [Epoch 199] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897938562093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020204103391303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804020897013 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020193938703556 [INFO] [stdout] [Epoch 200] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989794258730896 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020370086963 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249898036343152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201943252853 [INFO] [stdout] [Epoch 201] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989794630004 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020203329596464 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989803277744446 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019468185599 [INFO] [stdout] [Epoch 202] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989794972454493 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202987145913 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802948854933 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195010745445 [INFO] [stdout] [Epoch 203] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795288319921 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020267128043 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980264549773 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195314102607 [INFO] [stdout] [Epoch 204] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979557966414 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202379936186 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802365690703 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195593909595 [INFO] [stdout] [Epoch 205] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795848390775 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202111209506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802107605613 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019585199465 [INFO] [stdout] [Epoch 206] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796096255665 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020186334459 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801869556139 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201960900441 [INFO] [stdout] [Epoch 207] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796324878355 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201634721873 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980164998689 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019630961332 [INFO] [stdout] [Epoch 208] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796535752637 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020142384757 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980144746321 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196512136984 [INFO] [stdout] [Epoch 209] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796730256364 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201229343815 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801260661804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019669893838 [INFO] [stdout] [Epoch 210] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796909660422 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020104993974 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801088362135 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019687123803 [INFO] [stdout] [Epoch 211] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797075137005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200884463157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800929438413 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019703016174 [INFO] [stdout] [Epoch 212] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797227767332 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020073183281 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800782852228 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197176747917 [INFO] [stdout] [Epoch 213] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897973685487 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020059105143 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800647645805 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019731195433 [INFO] [stdout] [Epoch 214] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797498400937 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020046119919 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800522935707 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197436664416 [INFO] [stdout] [Epoch 215] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797618172502 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020034142762 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980040790709 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019755169303 [INFO] [stdout] [Epoch 216] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797728645988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200230954127 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980030180835 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019765779176 [INFO] [stdout] [Epoch 217] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979783054321 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202001290569 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980020394625 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019775565386 [INFO] [stdout] [Epoch 218] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797924529972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020003507014 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800113681354 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019784591875 [INFO] [stdout] [Epoch 219] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979801122037 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019994837973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980003042389 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197929176214 [INFO] [stdout] [Epoch 220] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798091180837 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199868419264 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799953629857 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198005970246 [INFO] [stdout] [Epoch 221] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798164933824 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019979466628 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799882797495 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201980768026 [INFO] [stdout] [Epoch 222] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798232961213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199726638876 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799817463976 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019814213612 [INFO] [stdout] [Epoch 223] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798295707527 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019966389256 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799757202422 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198202397665 [INFO] [stdout] [Epoch 224] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979835358272 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199606017363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799701619078 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198257981014 [INFO] [stdout] [Epoch 225] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798406964966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019955263512 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799650350772 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198309249315 [INFO] [stdout] [Epoch 226] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798456203044 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199503397046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799603062524 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198356537566 [INFO] [stdout] [Epoch 227] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979850161868 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199457981413 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799559445344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019840015474 [INFO] [stdout] [Epoch 228] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798543508612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019941609147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799519214254 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019844038583 [INFO] [stdout] [Epoch 229] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798582146547 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199377453546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979948210638 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201984774937 [INFO] [stdout] [Epoch 230] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979861778495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199341815137 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979944787926 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198511720827 [INFO] [stdout] [Epoch 231] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798650656686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199308943404 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979941630924 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019854329084 [INFO] [stdout] [Epoch 232] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798680976522 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199278623557 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979938719007 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198572410014 [INFO] [stdout] [Epoch 233] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798708942573 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019925065751 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799360331472 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198599268607 [INFO] [stdout] [Epoch 234] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979873473757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199224862506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979933555796 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198624042123 [INFO] [stdout] [Epoch 235] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798758530052 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199201070027 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979931270766 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019864689242 [INFO] [stdout] [Epoch 236] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979878047548 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199179124603 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979929163127 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198667968814 [INFO] [stdout] [Epoch 237] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979880071725 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199158882834 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799272191068 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198687409013 [INFO] [stdout] [Epoch 238] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798819387612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199140212474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799254260053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019870534003 [INFO] [stdout] [Epoch 239] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798836608565 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199122991516 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979923772106 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198721879023 [INFO] [stdout] [Epoch 240] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798852492615 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199107107467 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979922246601 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019873713407 [INFO] [stdout] [Epoch 241] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798867143556 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019909245653 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979920839524 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198751204837 [INFO] [stdout] [Epoch 242] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798880657127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199078942957 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799195416817 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198764183267 [INFO] [stdout] [Epoch 243] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979889312161 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199066478467 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799183445927 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019877615416 [INFO] [stdout] [Epoch 244] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798904618454 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019905498162 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979917240436 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198787195725 [INFO] [stdout] [Epoch 245] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798915222772 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201990443773 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799162219964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019879738011 [INFO] [stdout] [Epoch 246] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798925003862 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019903459622 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979915282621 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198806773875 [INFO] [stdout] [Epoch 247] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979893402563 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019902557445 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799144161698 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198815438383 [INFO] [stdout] [Epoch 248] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798942347025 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199017253054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799136169832 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198823430246 [INFO] [stdout] [Epoch 249] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979895002241 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199009577666 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897991287984 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019883080168 [INFO] [stdout] [Epoch 250] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979895710193 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199002498157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979912199923 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019883760085 [INFO] [stdout] [Epoch 251] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798963631857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198995968224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799115727881 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198843872205 [INFO] [stdout] [Epoch 252] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798969654864 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198989945215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979910994338 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201988496567 [INFO] [stdout] [Epoch 253] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798975210295 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198984389786 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979910460795 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019885499214 [INFO] [stdout] [Epoch 254] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798980334446 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198979265635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799099686724 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019885991336 [INFO] [stdout] [Epoch 255] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798985060793 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198974539294 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799095147527 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019886445256 [INFO] [stdout] [Epoch 256] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979898942024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198970179836 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799090960718 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019886863936 [INFO] [stdout] [Epoch 257] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798993441245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019896615884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979908709894 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198872501143 [INFO] [stdout] [Epoch 258] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798997150098 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019896244998 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799083536962 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019887606312 [INFO] [stdout] [Epoch 259] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979900057102 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019895902906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799080251507 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019887934857 [INFO] [stdout] [Epoch 260] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799003726373 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989558737 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799077221106 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198882378975 [INFO] [stdout] [Epoch 261] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799006636773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198952963314 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799074425967 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019888517412 [INFO] [stdout] [Epoch 262] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799009321226 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198950278856 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799071847812 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198887752266 [INFO] [stdout] [Epoch 263] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799011797278 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198947802803 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799069469812 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198890130275 [INFO] [stdout] [Epoch 264] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799014081118 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198945518963 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799067276414 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198892323665 [INFO] [stdout] [Epoch 265] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799016187647 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894341243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799065253301 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889434678 [INFO] [stdout] [Epoch 266] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799018130648 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198941469436 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799063387252 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889621283 [INFO] [stdout] [Epoch 267] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799019922804 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893967728 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799061666057 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198897934027 [INFO] [stdout] [Epoch 268] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799021575837 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198938024247 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799060078485 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198899521596 [INFO] [stdout] [Epoch 269] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902310054 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893649954 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799058614157 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890098593 [INFO] [stdout] [Epoch 270] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799024506884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989350932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799057263512 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198902336567 [INFO] [stdout] [Epoch 271] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902580404 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893379603 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905601772 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890358236 [INFO] [stdout] [Epoch 272] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799027000495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893259959 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905486864 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890473144 [INFO] [stdout] [Epoch 273] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799028104076 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893149601 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905380876 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890579132 [INFO] [stdout] [Epoch 274] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902912198 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198930478095 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799052831163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890676892 [INFO] [stdout] [Epoch 275] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030060872 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198929539207 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799051929457 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890767062 [INFO] [stdout] [Epoch 276] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030926865 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198928673216 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905109776 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890850233 [INFO] [stdout] [Epoch 277] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799031725635 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892787445 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905033062 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890926946 [INFO] [stdout] [Epoch 278] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903246239 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198927137694 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904962304 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890997704 [INFO] [stdout] [Epoch 279] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799033141946 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892645814 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799048970396 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198910629694 [INFO] [stdout] [Epoch 280] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799033768756 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198925831334 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990483684 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198911231684 [INFO] [stdout] [Epoch 281] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799034346907 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892525318 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799047813147 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891178693 [INFO] [stdout] [Epoch 282] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799034880167 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198924719906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799047301006 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891229908 [INFO] [stdout] [Epoch 283] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903537204 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198924228044 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799046828612 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198912771464 [INFO] [stdout] [Epoch 284] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903582571 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198923774374 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799046392905 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891320717 [INFO] [stdout] [Epoch 285] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903624417 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198923355914 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904599102 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198913609055 [INFO] [stdout] [Epoch 286] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036630136 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892296994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045620337 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891397974 [INFO] [stdout] [Epoch 287] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903698614 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892261394 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045278424 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891432165 [INFO] [stdout] [Epoch 288] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037314517 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892228557 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044963054 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914637027 [INFO] [stdout] [Epoch 289] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037617402 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892198268 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044672167 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914927917 [INFO] [stdout] [Epoch 290] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903789677 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892170331 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904440386 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891519623 [INFO] [stdout] [Epoch 291] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038154456 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892144562 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044156386 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989154437 [INFO] [stdout] [Epoch 292] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903839213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892120795 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043928115 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915671966 [INFO] [stdout] [Epoch 293] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038611354 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920988735 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904371757 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915882514 [INFO] [stdout] [Epoch 294] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038813568 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892078651 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043523364 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916076714 [INFO] [stdout] [Epoch 295] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903900008 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892060001 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043344246 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891625583 [INFO] [stdout] [Epoch 296] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990391721 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920427984 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043179034 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891642105 [INFO] [stdout] [Epoch 297] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039330782 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989202693 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043026642 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891657344 [INFO] [stdout] [Epoch 298] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039477129 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892012296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042886082 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916714 [INFO] [stdout] [Epoch 299] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039612126 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919987947 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042756425 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916843656 [INFO] [stdout] [Epoch 300] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039736646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919863435 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042636845 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891696324 [INFO] [stdout] [Epoch 301] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039851496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919748583 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042526545 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891707354 [INFO] [stdout] [Epoch 302] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039957425 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919642656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042424812 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917175275 [INFO] [stdout] [Epoch 303] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904005513 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919544946 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042330973 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891726911 [INFO] [stdout] [Epoch 304] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040145258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891945483 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042244415 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891735567 [INFO] [stdout] [Epoch 305] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040228386 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919371695 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042164573 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891743551 [INFO] [stdout] [Epoch 306] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040305063 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891929501 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042090938 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917509146 [INFO] [stdout] [Epoch 307] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040375782 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891922429 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042023017 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891757707 [INFO] [stdout] [Epoch 308] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040441016 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919159065 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041960367 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917639714 [INFO] [stdout] [Epoch 309] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040501184 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919098897 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041902583 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989176975 [INFO] [stdout] [Epoch 310] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040556684 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919043397 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904184928 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917750803 [INFO] [stdout] [Epoch 311] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040607877 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891899221 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041800118 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917799964 [INFO] [stdout] [Epoch 312] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040655084 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918945003 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041754773 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917845305 [INFO] [stdout] [Epoch 313] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904069863 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918901455 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041712962 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891788712 [INFO] [stdout] [Epoch 314] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904073879 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989188613 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041674388 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917925697 [INFO] [stdout] [Epoch 315] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904077584 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891882424 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041638802 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917961274 [INFO] [stdout] [Epoch 316] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040810007 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891879008 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904160599 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917994086 [INFO] [stdout] [Epoch 317] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904084152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891875857 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041575722 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891802436 [INFO] [stdout] [Epoch 318] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040870594 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891872948 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041547806 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918052273 [INFO] [stdout] [Epoch 319] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040897404 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918702686 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041522054 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891807803 [INFO] [stdout] [Epoch 320] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904092214 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918677945 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041498298 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891810178 [INFO] [stdout] [Epoch 321] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904094495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918655135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041476388 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989181237 [INFO] [stdout] [Epoch 322] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891863408 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041456173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918143905 [INFO] [stdout] [Epoch 323] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040985403 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891861468 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041437538 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918162546 [INFO] [stdout] [Epoch 324] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041003308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891859678 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041420344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891817974 [INFO] [stdout] [Epoch 325] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041019825 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918580256 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904140448 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989181956 [INFO] [stdout] [Epoch 326] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041035052 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918565024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904138985 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891821023 [INFO] [stdout] [Epoch 327] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041049104 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891855098 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041376354 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891822373 [INFO] [stdout] [Epoch 328] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904106207 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891853802 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904136391 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891823617 [INFO] [stdout] [Epoch 329] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041074015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891852607 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041352434 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918247645 [INFO] [stdout] [Epoch 330] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041085037 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891851505 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041341845 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891825823 [INFO] [stdout] [Epoch 331] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904109521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891850488 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041332078 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918268006 [INFO] [stdout] [Epoch 332] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041104593 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891849549 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041323063 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891827702 [INFO] [stdout] [Epoch 333] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041113253 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918486825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904131475 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918285337 [INFO] [stdout] [Epoch 334] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041121238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891847885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904130708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918293 [INFO] [stdout] [Epoch 335] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041128605 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918471477 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904130001 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918300075 [INFO] [stdout] [Epoch 336] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904113539 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918464693 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041293492 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918306586 [INFO] [stdout] [Epoch 337] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041141647 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891845844 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041287478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183126 [INFO] [stdout] [Epoch 338] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041147423 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918452664 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041281927 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891831815 [INFO] [stdout] [Epoch 339] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041152752 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891844733 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904127681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891832327 [INFO] [stdout] [Epoch 340] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041157668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891844241 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041272093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891832799 [INFO] [stdout] [Epoch 341] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041162203 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843787 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904126774 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918332343 [INFO] [stdout] [Epoch 342] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041166383 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041263724 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891833636 [INFO] [stdout] [Epoch 343] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041170244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918429827 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041260016 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918340065 [INFO] [stdout] [Epoch 344] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041173802 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041256597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918343485 [INFO] [stdout] [Epoch 345] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041177083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041253444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891834664 [INFO] [stdout] [Epoch 346] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041180108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904125055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918349535 [INFO] [stdout] [Epoch 347] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041182895 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417187 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041247873 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835221 [INFO] [stdout] [Epoch 348] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041185462 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918414617 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041245397 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918354687 [INFO] [stdout] [Epoch 349] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041187843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904124311 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835697 [INFO] [stdout] [Epoch 350] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119003 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918410054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041241012 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835907 [INFO] [stdout] [Epoch 351] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840804 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123907 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836101 [INFO] [stdout] [Epoch 352] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041193916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840617 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041237284 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918362797 [INFO] [stdout] [Epoch 353] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041195632 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840446 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123564 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836444 [INFO] [stdout] [Epoch 354] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041197205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123412 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836596 [INFO] [stdout] [Epoch 355] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041198665 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840142 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041232721 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918367365 [INFO] [stdout] [Epoch 356] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041200014 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041231422 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918368653 [INFO] [stdout] [Epoch 357] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041201258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041230235 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918369847 [INFO] [stdout] [Epoch 358] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041202396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918397686 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041229135 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837094 [INFO] [stdout] [Epoch 359] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041203456 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839662 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041228114 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837196 [INFO] [stdout] [Epoch 360] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041204433 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839565 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041227181 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183729 [INFO] [stdout] [Epoch 361] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041205338 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041226315 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837376 [INFO] [stdout] [Epoch 362] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206165 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839392 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041225516 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918374565 [INFO] [stdout] [Epoch 363] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206937 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224783 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837529 [INFO] [stdout] [Epoch 364] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120763 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224106 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837597 [INFO] [stdout] [Epoch 365] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208285 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223476 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837661 [INFO] [stdout] [Epoch 366] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208896 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412229 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918377185 [INFO] [stdout] [Epoch 367] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209446 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839064 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222366 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837772 [INFO] [stdout] [Epoch 368] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839012 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221866 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837821 [INFO] [stdout] [Epoch 369] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121044 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837867 [INFO] [stdout] [Epoch 370] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121087 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918389215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918379084 [INFO] [stdout] [Epoch 371] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918388804 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220612 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837947 [INFO] [stdout] [Epoch 372] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121164 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918388443 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220256 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837982 [INFO] [stdout] [Epoch 373] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121198 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918388104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219934 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838015 [INFO] [stdout] [Epoch 374] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212296 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838778 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219635 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380444 [INFO] [stdout] [Epoch 375] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183875 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219357 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380727 [INFO] [stdout] [Epoch 376] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121285 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918387233 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219102 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380977 [INFO] [stdout] [Epoch 377] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121309 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918386994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121887 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918381215 [INFO] [stdout] [Epoch 378] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213318 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918386767 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218647 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838143 [INFO] [stdout] [Epoch 379] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213523 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218447 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838164 [INFO] [stdout] [Epoch 380] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213723 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918386356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218258 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918381826 [INFO] [stdout] [Epoch 381] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213906 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838618 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382 [INFO] [stdout] [Epoch 382] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214067 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918386017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217925 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382154 [INFO] [stdout] [Epoch 383] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838586 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121778 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382303 [INFO] [stdout] [Epoch 384] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121436 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217647 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382437 [INFO] [stdout] [Epoch 385] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838559 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217514 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382564 [INFO] [stdout] [Epoch 386] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121461 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217403 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382675 [INFO] [stdout] [Epoch 387] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214722 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838536 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217303 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838278 [INFO] [stdout] [Epoch 388] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217203 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838288 [INFO] [stdout] [Epoch 389] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217114 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838297 [INFO] [stdout] [Epoch 390] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838508 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383053 [INFO] [stdout] [Epoch 391] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216948 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838313 [INFO] [stdout] [Epoch 392] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838493 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383197 [INFO] [stdout] [Epoch 393] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838486 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383264 [INFO] [stdout] [Epoch 394] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215288 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121676 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383325 [INFO] [stdout] [Epoch 395] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215344 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838338 [INFO] [stdout] [Epoch 396] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412154 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838468 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383436 [INFO] [stdout] [Epoch 397] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838348 [INFO] [stdout] [Epoch 398] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838459 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121656 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383525 [INFO] [stdout] [Epoch 399] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215538 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216515 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838357 [INFO] [stdout] [Epoch 400] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215582 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183845 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121647 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838361 [INFO] [stdout] [Epoch 401] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215616 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838447 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216437 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838364 [INFO] [stdout] [Epoch 402] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121565 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384435 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216404 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383675 [INFO] [stdout] [Epoch 403] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215682 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384396 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838371 [INFO] [stdout] [Epoch 404] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121571 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216348 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838373 [INFO] [stdout] [Epoch 405] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215732 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838434 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216326 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838375 [INFO] [stdout] [Epoch 406] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215754 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838432 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216304 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383775 [INFO] [stdout] [Epoch 407] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215777 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216282 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383797 [INFO] [stdout] [Epoch 408] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412158 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384285 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121627 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838381 [INFO] [stdout] [Epoch 409] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121581 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838382 [INFO] [stdout] [Epoch 410] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121582 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384263 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216249 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838383 [INFO] [stdout] [Epoch 411] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215832 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838425 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216237 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838384 [INFO] [stdout] [Epoch 412] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838424 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838385 [INFO] [stdout] [Epoch 413] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838423 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838387 [INFO] [stdout] [Epoch 414] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215865 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838422 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216204 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838388 [INFO] [stdout] [Epoch 415] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215877 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838421 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216193 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838389 [INFO] [stdout] [Epoch 416] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183839 [INFO] [stdout] [Epoch 417] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412159 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121617 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383913 [INFO] [stdout] [Epoch 418] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121591 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121616 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383924 [INFO] [stdout] [Epoch 419] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121592 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384163 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383936 [INFO] [stdout] [Epoch 420] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215932 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838415 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216137 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383947 [INFO] [stdout] [Epoch 421] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216126 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838396 [INFO] [stdout] [Epoch 422] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384124 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216115 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838397 [INFO] [stdout] [Epoch 423] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215965 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 424] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 425] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 426] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 427] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 428] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 429] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 430] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 431] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 432] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 433] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 434] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 435] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 436] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 437] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 438] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 439] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 440] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 441] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 442] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 443] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 444] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 445] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 446] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 447] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 448] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 449] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 450] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 451] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 452] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 453] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 454] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 455] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 456] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 457] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 458] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 459] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 460] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 461] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 462] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 463] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 464] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 465] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 466] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 467] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 468] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 469] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 470] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 471] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 472] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 473] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 474] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 475] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 476] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 477] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 478] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 479] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 480] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 481] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 482] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 483] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 484] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 485] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 486] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 487] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 488] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 489] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 490] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 491] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 492] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 493] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 494] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 495] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 496] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 497] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 498] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 499] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 500] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 501] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 502] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 503] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 504] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 505] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 506] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 507] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 508] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 509] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 510] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 511] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 512] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 513] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 514] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 515] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 516] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 517] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 518] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 519] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 520] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 521] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 522] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 523] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 524] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 525] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 526] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 527] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 528] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 529] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 530] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 531] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 532] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 533] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 534] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 535] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 536] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 537] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 538] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 539] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 540] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 541] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 542] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 543] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 544] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 545] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 546] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 547] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 548] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 549] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 550] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 551] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 552] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 553] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 554] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 555] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 556] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 557] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 558] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 559] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 560] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 561] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 562] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 563] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 564] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 565] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 566] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 567] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 568] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 569] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 570] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 571] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 572] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 573] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 574] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 575] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 576] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 577] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 578] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 579] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 580] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 581] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 582] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 583] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 584] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 585] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 586] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 587] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 588] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 589] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 590] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 591] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 592] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 593] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 594] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 595] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 596] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 597] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 598] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 599] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 600] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 601] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 602] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 603] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 604] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 605] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 606] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 607] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 608] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 609] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 610] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 611] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 612] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 613] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 614] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 615] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 616] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 617] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 618] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 619] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 620] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 621] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 622] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 623] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 624] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 625] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 626] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 627] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 628] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 629] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 630] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 631] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 632] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 633] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 634] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 635] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 636] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 637] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 638] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 639] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 640] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 641] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 642] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 643] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 644] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 645] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 646] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 647] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 648] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 649] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 650] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 651] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 652] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 653] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 654] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 655] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 656] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 657] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 658] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 659] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 660] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 661] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 662] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 663] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 664] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 665] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 666] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 667] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 668] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 669] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 670] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 671] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 672] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 673] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 674] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 675] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 676] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 677] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 678] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 679] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 680] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 681] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 682] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 683] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 684] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 685] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 686] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 687] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 688] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 689] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 690] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 691] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 692] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 693] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 694] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 695] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 696] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 697] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 698] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 699] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 700] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 701] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 702] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 703] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 704] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 705] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 706] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 707] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 708] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 709] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 710] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 711] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 712] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 713] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 714] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 715] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 716] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 717] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 718] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 719] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 720] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 721] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 722] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 723] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 724] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 725] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 726] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 727] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 728] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 729] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 730] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 731] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 732] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 733] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 734] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 735] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 736] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 737] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 738] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 739] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 740] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 741] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 742] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 743] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 744] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 745] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 746] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 747] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 748] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 749] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 750] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 751] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 752] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 753] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 754] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 755] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 756] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 757] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 758] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 759] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 760] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 761] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 762] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 763] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 764] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 765] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 766] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 767] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 768] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 769] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 770] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 771] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 772] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 773] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 774] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 775] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 776] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 777] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 778] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 779] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 780] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 781] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 782] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 783] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 784] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 785] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 786] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 787] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 788] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 789] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 790] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 791] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 792] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 793] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 794] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 795] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 796] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 797] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 798] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 799] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 800] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 801] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 802] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 803] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 804] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 805] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 806] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 807] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 808] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 809] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 810] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 811] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 812] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 813] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 814] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 815] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 816] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 817] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 818] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 819] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 820] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 821] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 822] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 823] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 824] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 825] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 826] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 827] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 828] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 829] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 830] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 831] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 832] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 833] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 834] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 835] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 836] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 837] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 838] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 839] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 840] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 841] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 842] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 843] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 844] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 845] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 846] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 847] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 848] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 849] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 850] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 851] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 852] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 853] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 854] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 855] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 856] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 857] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 858] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 859] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 860] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 861] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 862] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 863] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 864] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 865] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 866] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 867] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 868] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 869] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 870] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 871] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 872] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 873] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 874] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 875] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 876] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 877] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 878] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 879] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 880] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 881] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 882] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 883] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 884] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 885] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 886] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 887] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 888] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 889] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 890] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 891] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 892] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 893] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 894] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 895] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 896] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 897] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 898] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 899] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 900] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 901] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 902] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 903] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 904] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 905] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 906] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 907] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 908] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 909] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 910] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 911] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 912] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 913] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 914] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 915] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 916] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 917] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 918] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 919] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 920] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 921] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 922] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 923] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 924] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 925] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 926] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 927] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 928] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 929] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 930] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 931] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 932] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 933] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 934] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 935] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 936] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 937] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 938] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 939] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 940] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 941] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 942] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 943] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 944] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 945] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 946] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 947] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 948] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 949] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 950] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 951] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 952] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 953] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 954] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 955] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 956] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 957] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 958] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 959] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 960] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 961] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 962] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 963] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 964] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 965] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 966] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 967] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 968] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 969] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 970] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 971] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 972] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 973] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 974] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 975] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 976] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 977] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 978] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 979] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 980] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 981] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 982] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 983] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 984] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 985] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 986] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 987] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 988] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 989] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 990] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 991] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 992] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 993] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 994] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 995] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 996] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 997] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 998] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 999] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [INFO] [stdout] thread 'models::sequential::test_sequential_xor1' (23) panicked at src/models/sequential.rs:242:5: [INFO] [stdout] assertion `left == right` failed [INFO] [stdout] left: [0.0, 0.0, 0.0, 0.0] [INFO] [stdout] right: [0.0, 1.0, 1.0, 0.0] [INFO] [stdout] stack backtrace: [INFO] [stdout] 0: 0x5a8d6c4154e2 - std::backtrace_rs::backtrace::libunwind::trace::hc4a5f428cfb78751 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/../../backtrace/src/backtrace/libunwind.rs:117:9 [INFO] [stdout] 1: 0x5a8d6c4154e2 - std::backtrace_rs::backtrace::trace_unsynchronized::h20e1095684b4c296 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/../../backtrace/src/backtrace/mod.rs:66:14 [INFO] [stdout] 2: 0x5a8d6c4154e2 - std::sys::backtrace::_print_fmt::h461f2e3a8f6b29e2 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/sys/backtrace.rs:66:9 [INFO] [stdout] 3: 0x5a8d6c4154e2 - ::fmt::h4ee3a75aa71a2c45 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/sys/backtrace.rs:39:26 [INFO] [stdout] 4: 0x5a8d6c4384ff - core::fmt::rt::Argument::fmt::h6f1564705cd089af [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/fmt/rt.rs:173:76 [INFO] [stdout] 5: 0x5a8d6c4384ff - core::fmt::write::h21ca93b65a7c281a [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/fmt/mod.rs:1468:25 [INFO] [stdout] 6: 0x5a8d6c4023d3 - std::io::default_write_fmt::h6f3360f4711e9130 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/io/mod.rs:639:11 [INFO] [stdout] 7: 0x5a8d6c4023d3 - std::io::Write::write_fmt::hf4539125c0e0bc30 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/io/mod.rs:1954:13 [INFO] [stdout] 8: 0x5a8d6c415af2 - std::sys::backtrace::BacktraceLock::print::h58d5d73f9e953cf1 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/sys/backtrace.rs:42:9 [INFO] [stdout] 9: 0x5a8d6c4008dc - std::panicking::default_hook::{{closure}}::h1457fbe47c9457d1 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:301:27 [INFO] [stdout] 10: 0x5a8d6c40074e - std::panicking::default_hook::hccb5e73b206c0830 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:325:9 [INFO] [stdout] 11: 0x5a8d6c350ade - as core::ops::function::Fn>::call::h04940a86aa899793 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/alloc/src/boxed.rs:1985:9 [INFO] [stdout] 12: 0x5a8d6c350ade - test::test_main_with_exit_callback::{{closure}}::hca6cc295403b83e8 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/test/src/lib.rs:145:21 [INFO] [stdout] 13: 0x5a8d6c401663 - as core::ops::function::Fn>::call::h9d85285925beb538 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/alloc/src/boxed.rs:1985:9 [INFO] [stdout] 14: 0x5a8d6c401663 - std::panicking::panic_with_hook::h3190ecc6229cdd29 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:842:13 [INFO] [stdout] 15: 0x5a8d6c4158fa - std::panicking::panic_handler::{{closure}}::ha1f1b769bc2bb40c [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:707:13 [INFO] [stdout] 16: 0x5a8d6c415859 - std::sys::backtrace::__rust_end_short_backtrace::h5f9cf66f19c2a172 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/sys/backtrace.rs:174:18 [INFO] [stdout] 17: 0x5a8d6c40130d - __rustc[a93bd50104b99ad4]::rust_begin_unwind [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:698:5 [INFO] [stdout] 18: 0x5a8d6c43f4f0 - core::panicking::panic_fmt::hc70c3c83f13c1375 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/panicking.rs:75:14 [INFO] [stdout] 19: 0x5a8d6c43f5e0 - core::panicking::assert_failed_inner::hb61150608d983f16 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/panicking.rs:448:17 [INFO] [stdout] 20: 0x5a8d6c31ffa6 - core::panicking::assert_failed::hc57cde1730582402 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/panicking.rs:403:5 [INFO] [stdout] 21: 0x5a8d6c311387 - easynn::models::sequential::test_sequential_xor1::h199790f958c20a03 [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:242:5 [INFO] [stdout] 22: 0x5a8d6c311ad7 - easynn::models::sequential::test_sequential_xor1::{{closure}}::h9cf530042313cdda [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:205:26 [INFO] [stdout] 23: 0x5a8d6c3259d6 - core::ops::function::FnOnce::call_once::h6b1f259a8b154fb9 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 24: 0x5a8d6c351b5b - core::ops::function::FnOnce::call_once::h70d190c46966003b [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 25: 0x5a8d6c351b5b - test::__rust_begin_short_backtrace::hb077ccaabb17d2ec [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/test/src/lib.rs:663:18 [INFO] [stdout] 26: 0x5a8d6c34f7c5 - test::run_test_in_process::{{closure}}::hd73eeb633a1507bd [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/test/src/lib.rs:686:74 [INFO] [stdout] 27: 0x5a8d6c34f7c5 - as core::ops::function::FnOnce<()>>::call_once::h033c82756fc9d192 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/panic/unwind_safe.rs:272:9 [INFO] [stdout] 28: 0x5a8d6c34f7c5 - std::panicking::catch_unwind::do_call::h734b44e243d34585 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:590:40 [INFO] [stdout] 29: 0x5a8d6c34f7c5 - std::panicking::catch_unwind::h5e85417122517fb1 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:553:19 [INFO] [stdout] 30: 0x5a8d6c34f7c5 - std::panic::catch_unwind::h0900e58a82a7d188 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panic.rs:359:14 [INFO] [stdout] 31: 0x5a8d6c34f7c5 - test::run_test_in_process::h27721efd62ae77d0 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/test/src/lib.rs:686:27 [INFO] [stdout] 32: 0x5a8d6c34f7c5 - test::run_test::{{closure}}::h8b1264838cc597aa [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/test/src/lib.rs:607:43 [INFO] [stdout] 33: 0x5a8d6c3766d4 - test::run_test::{{closure}}::h6ecb96835e2eae4f [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/test/src/lib.rs:637:41 [INFO] [stdout] 34: 0x5a8d6c3766d4 - std::sys::backtrace::__rust_begin_short_backtrace::h098f38ee82a820a7 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/sys/backtrace.rs:158:18 [INFO] [stdout] 35: 0x5a8d6c35d2ea - std::thread::Builder::spawn_unchecked_::{{closure}}::{{closure}}::h042592f748f5e369 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/thread/mod.rs:559:17 [INFO] [stdout] 36: 0x5a8d6c35d2ea - as core::ops::function::FnOnce<()>>::call_once::h134fe7f3a2d9ec8d [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/panic/unwind_safe.rs:272:9 [INFO] [stdout] 37: 0x5a8d6c35d2ea - std::panicking::catch_unwind::do_call::heb87d604f60aee16 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:590:40 [INFO] [stdout] 38: 0x5a8d6c35d2ea - std::panicking::catch_unwind::h2203a0f553b89fd7 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panicking.rs:553:19 [INFO] [stdout] 39: 0x5a8d6c35d2ea - std::panic::catch_unwind::h4d383e0b0e25d838 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/panic.rs:359:14 [INFO] [stdout] 40: 0x5a8d6c35d2ea - std::thread::Builder::spawn_unchecked_::{{closure}}::h76cbdd4635cfd58b [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/thread/mod.rs:557:30 [INFO] [stdout] 41: 0x5a8d6c35d2ea - core::ops::function::FnOnce::call_once{{vtable.shim}}::he72e066680f5e267 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 42: 0x5a8d6c3ebfef - as core::ops::function::FnOnce>::call_once::h1b9c6fea2cbefc68 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/alloc/src/boxed.rs:1971:9 [INFO] [stdout] 43: 0x5a8d6c3ebfef - std::sys::pal::unix::thread::Thread::new::thread_start::h92caa992bc760789 [INFO] [stdout] at /rustc/b6ae10aa7319b7ebb6c7b3331dd71a9d6c9c5b4b/library/std/src/sys/pal/unix/thread.rs:107:17 [INFO] [stdout] 44: 0x77a0205adaa4 - [INFO] [stdout] 45: 0x77a02063aa34 - clone [INFO] [stdout] 46: 0x0 - [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] models::sequential::test_sequential_xor1 [INFO] [stdout] [INFO] [stdout] test result: FAILED. 6 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.62s [INFO] [stdout] [INFO] [stderr] error: test failed, to rerun pass `--lib` [INFO] running `Command { std: "docker" "inspect" "4d878cd55fa22989bd57c9434777cbcf780dc508fb33eedf423d9bad7eb6a5ee", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "4d878cd55fa22989bd57c9434777cbcf780dc508fb33eedf423d9bad7eb6a5ee", kill_on_drop: false }` [INFO] [stdout] 4d878cd55fa22989bd57c9434777cbcf780dc508fb33eedf423d9bad7eb6a5ee