[INFO] fetching crate easynn 0.1.7-beta... [INFO] testing easynn-0.1.7-beta against try#8de4c7234dd9b97c9d76b58671343fdbbc9a433e+target=x86_64-unknown-linux-musl for musl_upgrade_1_2_5_with_getrandom_patch_0 [INFO] extracting crate easynn 0.1.7-beta into /workspace/builds/worker-3-tc1/source [INFO] started tweaking crates.io crate easynn 0.1.7-beta [INFO] finished tweaking crates.io crate easynn 0.1.7-beta [INFO] tweaked toml for crates.io crate easynn 0.1.7-beta written to /workspace/builds/worker-3-tc1/source/Cargo.toml [INFO] validating manifest of crates.io crate easynn 0.1.7-beta on toolchain 8de4c7234dd9b97c9d76b58671343fdbbc9a433e [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+8de4c7234dd9b97c9d76b58671343fdbbc9a433e" "metadata" "--manifest-path" "Cargo.toml" "--no-deps", kill_on_drop: false }` [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+8de4c7234dd9b97c9d76b58671343fdbbc9a433e" "generate-lockfile" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] [stderr] Blocking waiting for file lock on package cache [INFO] [stderr] Updating crates.io index [INFO] [stderr] Locking 28 packages to latest compatible versions [INFO] [stderr] Adding itertools v0.10.5 (available: v0.14.0) [INFO] [stderr] Adding rand v0.8.5 (available: v0.9.1) [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+8de4c7234dd9b97c9d76b58671343fdbbc9a433e" "fetch" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] [stderr] Blocking waiting for file lock on package cache [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:90999bfc7ae267e83380e433d8e61a7c072ca6729e92edbae886d3423b3a6f4c" "/opt/rustwide/cargo-home/bin/cargo" "+8de4c7234dd9b97c9d76b58671343fdbbc9a433e" "metadata" "--no-deps" "--format-version=1", kill_on_drop: false }` [INFO] [stdout] 928191c650b518dfdf3f0a52edd89c86a1fc897fcbbc3e6d4a70e93c53d5f00b [INFO] running `Command { std: "docker" "start" "-a" "928191c650b518dfdf3f0a52edd89c86a1fc897fcbbc3e6d4a70e93c53d5f00b", kill_on_drop: false }` [INFO] running `Command { std: "docker" "inspect" "928191c650b518dfdf3f0a52edd89c86a1fc897fcbbc3e6d4a70e93c53d5f00b", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "928191c650b518dfdf3f0a52edd89c86a1fc897fcbbc3e6d4a70e93c53d5f00b", kill_on_drop: false }` [INFO] [stdout] 928191c650b518dfdf3f0a52edd89c86a1fc897fcbbc3e6d4a70e93c53d5f00b [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:90999bfc7ae267e83380e433d8e61a7c072ca6729e92edbae886d3423b3a6f4c" "/opt/rustwide/cargo-home/bin/cargo" "+8de4c7234dd9b97c9d76b58671343fdbbc9a433e" "build" "--frozen" "--message-format=json" "--target" "x86_64-unknown-linux-musl", kill_on_drop: false }` [INFO] [stdout] c262d021868ec00fd8c64b8a252082e38a21ae67a28caccea6441debaa4e81e5 [INFO] running `Command { std: "docker" "start" "-a" "c262d021868ec00fd8c64b8a252082e38a21ae67a28caccea6441debaa4e81e5", kill_on_drop: false }` [INFO] [stderr] Compiling crossbeam-utils v0.8.21 [INFO] [stderr] Compiling rayon-core v1.12.1 [INFO] [stderr] Compiling either v1.15.0 [INFO] [stderr] Compiling num-traits v0.2.19 [INFO] [stderr] Compiling getrandom v0.2.16 [INFO] [stderr] Compiling ppv-lite86 v0.2.21 [INFO] [stderr] Compiling rand_core v0.6.4 [INFO] [stderr] Compiling itertools v0.10.5 [INFO] [stderr] Compiling crossbeam-epoch v0.9.18 [INFO] [stderr] Compiling crossbeam-channel v0.5.15 [INFO] [stderr] Compiling crossbeam-queue v0.3.12 [INFO] [stderr] Compiling rand_chacha v0.3.1 [INFO] [stderr] Compiling rand v0.8.5 [INFO] [stderr] Compiling crossbeam-deque v0.8.6 [INFO] [stderr] Compiling crossbeam v0.8.4 [INFO] [stderr] Compiling rayon v1.10.0 [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `dev` profile [unoptimized + debuginfo] target(s) in 6.93s [INFO] running `Command { std: "docker" "inspect" "c262d021868ec00fd8c64b8a252082e38a21ae67a28caccea6441debaa4e81e5", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "c262d021868ec00fd8c64b8a252082e38a21ae67a28caccea6441debaa4e81e5", kill_on_drop: false }` [INFO] [stdout] c262d021868ec00fd8c64b8a252082e38a21ae67a28caccea6441debaa4e81e5 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:90999bfc7ae267e83380e433d8e61a7c072ca6729e92edbae886d3423b3a6f4c" "/opt/rustwide/cargo-home/bin/cargo" "+8de4c7234dd9b97c9d76b58671343fdbbc9a433e" "test" "--frozen" "--no-run" "--message-format=json" "--target" "x86_64-unknown-linux-musl", kill_on_drop: false }` [INFO] [stdout] dae15ae3e8d42f47b203c07e87c97ed855cb24947ce7db1f4375819a5f3285b6 [INFO] running `Command { std: "docker" "start" "-a" "dae15ae3e8d42f47b203c07e87c97ed855cb24947ce7db1f4375819a5f3285b6", kill_on_drop: false }` [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stdout] --> src/models/sequential.rs:180:9 [INFO] [stdout] | [INFO] [stdout] 180 | use crate::layers::activation::Activation::*; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `rand::Rng` [INFO] [stdout] --> src/models/sequential.rs:207:9 [INFO] [stdout] | [INFO] [stdout] 207 | use rand::Rng; [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `test` profile [unoptimized + debuginfo] target(s) in 1.38s [INFO] running `Command { std: "docker" "inspect" "dae15ae3e8d42f47b203c07e87c97ed855cb24947ce7db1f4375819a5f3285b6", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "dae15ae3e8d42f47b203c07e87c97ed855cb24947ce7db1f4375819a5f3285b6", kill_on_drop: false }` [INFO] [stdout] dae15ae3e8d42f47b203c07e87c97ed855cb24947ce7db1f4375819a5f3285b6 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=forbid" "-e" "RUSTDOCFLAGS=--cap-lints=forbid" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:90999bfc7ae267e83380e433d8e61a7c072ca6729e92edbae886d3423b3a6f4c" "/opt/rustwide/cargo-home/bin/cargo" "+8de4c7234dd9b97c9d76b58671343fdbbc9a433e" "test" "--frozen" "--target" "x86_64-unknown-linux-musl", kill_on_drop: false }` [INFO] [stdout] 086b1c87f0cf87897b988f0ede44e926caddf81db5897898cb64f5dd89a257d3 [INFO] running `Command { std: "docker" "start" "-a" "086b1c87f0cf87897b988f0ede44e926caddf81db5897898cb64f5dd89a257d3", kill_on_drop: false }` [INFO] [stderr] warning: unused variable: `olen` [INFO] [stderr] --> src/layers/dense.rs:96:13 [INFO] [stderr] | [INFO] [stderr] 96 | let olen = output.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_variables)]` on by default [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:148:13 [INFO] [stderr] | [INFO] [stderr] 148 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:205:13 [INFO] [stderr] | [INFO] [stderr] 205 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:137:17 [INFO] [stderr] | [INFO] [stderr] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_mut)]` on by default [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:146:17 [INFO] [stderr] | [INFO] [stderr] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] [INFO] [stderr] warning: function `determine_thread` is never used [INFO] [stderr] --> src/layers/dense.rs:18:4 [INFO] [stderr] | [INFO] [stderr] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stderr] | ^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(dead_code)]` on by default [INFO] [stderr] [INFO] [stderr] warning: method `pos2index` is never used [INFO] [stderr] --> src/tensor/mod.rs:38:19 [INFO] [stderr] | [INFO] [stderr] 26 | impl Tensor { [INFO] [stderr] | ----------------------- method in this implementation [INFO] [stderr] ... [INFO] [stderr] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stderr] --> src/models/sequential.rs:180:9 [INFO] [stderr] | [INFO] [stderr] 180 | use crate::layers::activation::Activation::*; [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_imports)]` on by default [INFO] [stderr] [INFO] [stderr] warning: unused import: `rand::Rng` [INFO] [stderr] --> src/models/sequential.rs:207:9 [INFO] [stderr] | [INFO] [stderr] 207 | use rand::Rng; [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: `easynn` (lib) generated 7 warnings (run `cargo fix --lib -p easynn` to apply 2 suggestions) [INFO] [stderr] warning: `easynn` (lib test) generated 9 warnings (7 duplicates) (run `cargo fix --lib -p easynn --tests` to apply 2 suggestions) [INFO] [stderr] Finished `test` profile [unoptimized + debuginfo] target(s) in 0.08s [INFO] [stderr] Running unittests src/lib.rs (/opt/rustwide/target/x86_64-unknown-linux-musl/debug/deps/easynn-0a71949ca8c08f0d) [INFO] [stdout] [INFO] [stdout] running 7 tests [INFO] [stdout] test layers::dense::test_dense_activate ... ok [INFO] [stdout] test layers::dense::test_add_weight_delta_to ... ok [INFO] [stdout] test layers::dense::test_dense_forward ... ok [INFO] [stdout] test layers::dense::test_dense_descend ... ok [INFO] [stdout] test models::sequential::test_sequential_predict ... ok [INFO] [stdout] test layers::dense::test_dense_backpropagate ... ok [INFO] [stdout] test models::sequential::test_sequential_xor1 ... FAILED [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] [INFO] [stdout] ---- models::sequential::test_sequential_xor1 stdout ---- [INFO] [stdout] [Epoch 0] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.00000000008909289543744957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.9999814998351052 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.9603822324390692 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0015688636776869428 [INFO] [stdout] [Epoch 1] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0015067366760468186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.925366325857055 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8887218193509111 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.005796381889445223 [INFO] [stdout] [Epoch 2] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0055668451666103244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8591082621963138 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8250875750114282 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.012061212763235652 [INFO] [stdout] [Epoch 3] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0115835887377864 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.800175798286849 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.7684888366730174 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.019852175498445097 [INFO] [stdout] [Epoch 4] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.01906602934866769 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7476746194994163 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.718066704565764 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.02875045690850625 [INFO] [stdout] [Epoch 5] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.02761193881487596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7008284322697329 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6730756263505397 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.03841457839573057 [INFO] [stdout] [Epoch 6] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.03689336109119171 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6589625499179772 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6328676329400502 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.04856770332198994 [INFO] [stdout] [Epoch 7] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.04664442227035713 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6214898349961017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5968788375291958 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.05898692797814059 [INFO] [stdout] [Epoch 8] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.056651045630110745 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5878986537074468 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5646178670196691 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.06949425318646696 [INFO] [stdout] [Epoch 9] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.06674228076017467 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.557742548787706 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.535655943854833 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.07994897932283467 [INFO] [stdout] [Epoch 10] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.07678299974153027 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5306313805365123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5096183778664575 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.09024130642787703 [INFO] [stdout] [Epoch 11] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.08666775069320189 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5062237225673148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4861772631529016 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.10028695411787612 [INFO] [stdout] [Epoch 12] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.09631559073466671 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.48422033025503575 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.46504520517624154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11002264408076155 [INFO] [stdout] [Epoch 13] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.10566574737501237 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.46435852661917826 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4459699289644101 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11940231179480619 [INFO] [stdout] [Epoch 14] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.11467398024757208 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4464073731764643 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.42872964119806767 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1283939343698562 [INFO] [stdout] [Epoch 15] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.123309534568642 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4301635127204701 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4131290376161661 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.13697687862139316 [INFO] [stdout] [Epoch 16] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.13155259422781074 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4154475875372662 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3989958630702479 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.14513968810399774 [INFO] [stdout] [Epoch 17] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.13939215645489736 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.40210115067221935 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3861779451050844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.15287824024201044 [INFO] [stdout] [Epoch 18] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.14682426192823844 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.38998399988693566 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.37454063349092204 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.16019421523229213 [INFO] [stdout] [Epoch 19] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.15385052430889923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.37897187419577705 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3639645879771546 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.16709382733835437 [INFO] [stdout] [Epoch 20] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16047691177555615 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.36895446161150186 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3543438649312359 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1735867767860305 [INFO] [stdout] [Epoch 21] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16671274042509943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.35983367418325873 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.34558426068516834 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.17968538691172006 [INFO] [stdout] [Epoch 22] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1725698455898072 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.35152215276797355 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3376018755179436 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.18540389667803148 [INFO] [stdout] [Epoch 23] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.17806190236936859 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.34394196940040794 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.33032186741174746 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.19075788330540822 [INFO] [stdout] [Epoch 24] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1832038711262975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3370234997559442 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.32367736916521683 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.19576379369706925 [INFO] [stdout] [Epoch 25] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.18801154746644524 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3307044421511059 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3176085462415411 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20043856666457724 [INFO] [stdout] [Epoch 26] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.19250119942443686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.32492896290009904 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.31206177596888435 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20479933078290083 [INFO] [stdout] [Epoch 27] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.19668927728367191 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3196469507265454 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3069889314774126 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2088631650937162 [INFO] [stdout] [Epoch 28] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2005921837557763 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.31481336539068994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3023467561208652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21264691189915672 [INFO] [stdout] [Epoch 29] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20422609418771906 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.31038766779557314 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.29809631615052234 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21616703260069273 [INFO] [stdout] [Epoch 30] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20760681810947193 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.30633332063364016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2942025211362086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21943949898642967 [INFO] [stdout] [Epoch 31] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21074969482633168 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.30261735017288593 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.29063370310570635 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22247971359486973 [INFO] [stdout] [Epoch 32] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2136695169362756 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29920996109716586 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2873612466373905 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22530245381808695 [INFO] [stdout] [Epoch 33] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21638047664665166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29608419744127695 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2843592632222799 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22792183528121499 [INFO] [stdout] [Epoch 34] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2188961306038383 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2932156436256285 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.28160430413773574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23035129077264613 [INFO] [stdout] [Epoch 35] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22122937965780737 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29058216042140705 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2790751068684058 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23260356162123932 [INFO] [stdout] [Epoch 36] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22339246058079495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2881636513852697 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27675237079010345 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23469069894080402 [INFO] [stdout] [Epoch 37] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22539694726250367 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2859418559099662 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2746185584156256 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23662407260318258 [INFO] [stdout] [Epoch 38] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22725375932785094 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28390016555854763 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27265771900212626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23841438617213448 [INFO] [stdout] [Epoch 39] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22897317647947132 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28202346079745977 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2708553317495806 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24007169634174524 [INFO] [stdout] [Epoch 40] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2305648571663646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28029796562852216 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2691981661893356 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2416054356844058 [INFO] [stdout] [Epoch 41] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23203786043105498 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27871111795062276 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26767415767948377 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24302443773232024 [INFO] [stdout] [Epoch 42] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23340066999787124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2772514537667214 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2662722961972669 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24433696359958873 [INFO] [stdout] [Epoch 43] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23466121984079516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27590850359701513 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2649825268542835 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24555072950477497 [INFO] [stdout] [Epoch 44] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23582692061613542 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27467269967060043 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2637956607633566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24667293468123505 [INFO] [stdout] [Epoch 45] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2369046864676071 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2735352926504282 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.262703295061185 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24771028926837213 [INFO] [stdout] [Epoch 46] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23790096181309306 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2724882768039884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26169774104226595 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24866904186478903 [INFO] [stdout] [Epoch 47] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23882174780669135 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2715243226684316 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2607719594904787 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24955500649690743 [INFO] [stdout] [Epoch 48] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23967262823937743 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27063671637681364 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2599195024080103 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2503735888164486 [INFO] [stdout] [Epoch 49] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2404587946990644 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.269819304914375 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2591344604394856 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2511298113892761 [INFO] [stdout] [Epoch 50] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2411850708580076 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26906644666245044 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2584114153743384 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2518283379782311 [INFO] [stdout] [Epoch 51] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24185593579403966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2683729666646469 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2577453971844491 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25247349675520603 [INFO] [stdout] [Epoch 52] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24247554628344606 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.267734116116932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25713184511842474 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2530693024040501 [INFO] [stdout] [Epoch 53] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24304775802859568 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2671455356416213 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2565665724299374 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2536194770970174 [INFO] [stdout] [Epoch 54] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2435761458037212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2666032219561482 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2560457343664098 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25412747034424127 [INFO] [stdout] [Epoch 55] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24406402251835485 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26610349759193497 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25556579908702026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2545964777288877 [INFO] [stdout] [Epoch 56] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24451445721056916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26564298335755393 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25512352121632154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2550294585508246 [INFO] [stdout] [Epoch 57] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24493029199195712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2652185732744059 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25471591777246694 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25542915240937336 [INFO] [stdout] [Epoch 58] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24531415797370726 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2648274117430109 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25434024623771584 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2557980947614222 [INFO] [stdout] [Epoch 59] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24566849020861486 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.264466872724236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25399398456408506 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2561386314952379 [INFO] [stdout] [Epoch 60] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2459955416877714 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.264134540742876 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2536748129291876 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25645293256303403 [INFO] [stdout] [Epoch 61] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24629739643328272 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2638281935413493 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25338059707684196 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2567430047169911 [INFO] [stdout] [Epoch 62] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.246575981729943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2635457862292306 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2531093730942836 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25701070339418336 [INFO] [stdout] [Epoch 63] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24683307953951844 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2632854367902314 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25285933349306927 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2572577437959491 [INFO] [stdout] [Epoch 64] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24707033714137425 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26304541282229865 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25262881447426716 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2574857112067631 [INFO] [stdout] [Epoch 65] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2472892770427199 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2628241193989879 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2524162842705199 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25769607059678584 [INFO] [stdout] [Epoch 66] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24749130620089774 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2626200879513493 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25222033246820813 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25789017555105176 [INFO] [stdout] [Epoch 67] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24767772459897475 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2624319660794386 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2520396602224254 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2580692765668088 [INFO] [stdout] [Epoch 68] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24784973321450776 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2622585082113578 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.251873071285921 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25823452875890746 [INFO] [stdout] [Epoch 69] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24800844141979927 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26209856703558826 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2517194637807122 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2583869990114051 [INFO] [stdout] [Epoch 70] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24815487385029805 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2619510856393989 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25157782264781237 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25852767261175097 [INFO] [stdout] [Epoch 71] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2482899767760703 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26181509029240513 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2514472127165598 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2586574594020834 [INFO] [stdout] [Epoch 72] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2484146240095056 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26168968381999375 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2513267723404564 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25877719948032957 [INFO] [stdout] [Epoch 73] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24852962238065324 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2615740395164002 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2512157075512853 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25888766848197897 [INFO] [stdout] [Epoch 74] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2486357168098374 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2614673955517759 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2511132866876604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2589895824716111 [INFO] [stdout] [Epoch 75] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24873359500548015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.261369049831701 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25101883545810083 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2590836024715205 [INFO] [stdout] [Epoch 76] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24882389181339318 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2612783552712889 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25093173240228134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25917033865309935 [INFO] [stdout] [Epoch 77] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24890719324218155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26119471544938233 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2508514047173223 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2592503542150204 [INFO] [stdout] [Epoch 78] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24898404018785056 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2611175806113612 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25077732441888706 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25932416897071653 [INFO] [stdout] [Epoch 79] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2490549318792212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26104644399182275 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25070900480948255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25939226266617765 [INFO] [stdout] [Epoch 80] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2491203290643421 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26098083843087366 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2506459972287472 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25945507804768364 [INFO] [stdout] [Epoch 81] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2491806569567406 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2609203332600256 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2505878880626649 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2595130236977687 [INFO] [stdout] [Epoch 82] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24923630795908225 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2608645314357343 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25053429599061583 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25956647665645366 [INFO] [stdout] [Epoch 83] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24928764418060342 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26081306690047545 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25048486945095333 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25961578484361 [INFO] [stdout] [Epoch 84] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2493349997635484 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26076560215294714 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2504392843074273 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25966126929720007 [INFO] [stdout] [Epoch 85] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2493786830327764 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2607218260105282 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2503972417002483 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25970322624110476 [INFO] [stdout] [Epoch 86] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24941897848170258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26068145154852546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25035846606694107 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25974192899526594 [INFO] [stdout] [Epoch 87] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2494561486067991 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26064421420202494 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25032270331936224 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25977762973996216 [INFO] [stdout] [Epoch 88] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2494904356020054 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26060987001733393 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502897191643849 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25981056114517953 [INFO] [stdout] [Epoch 89] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24952206292357618 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2605781940410642 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502592975567756 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2598409378752437 [INFO] [stdout] [Epoch 90] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2495512367351299 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2605489788358916 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502312392737281 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2598689579781353 [INFO] [stdout] [Epoch 91] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24957814724194707 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2605220331129142 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502053606013808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25989480416821775 [INFO] [stdout] [Epoch 92] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24960296992290235 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26049718047135206 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501814921244246 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599186450104639 [INFO] [stdout] [Epoch 93] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24962586666779568 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604742582370822 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.250159477610632 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25994063601366735 [INFO] [stdout] [Epoch 94] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24964698682727235 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604531163921866 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25013917298279437 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25996092063956483 [INFO] [stdout] [Epoch 95] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24966646818198449 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26043361658832165 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25012044537116274 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25997963123428547 [INFO] [stdout] [Epoch 96] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24968443783715413 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26041563123729516 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25010317224003686 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25999688988805264 [INFO] [stdout] [Epoch 97] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24970101304823228 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26039904267276226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500872405826597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600128092286284 [INFO] [stdout] [Epoch 98] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497163019829213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603837423774478 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500725461790398 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26002749315356904 [INFO] [stdout] [Epoch 99] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24973040442443445 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26036963027073456 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25005899291175254 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26004103750598345 [INFO] [stdout] [Epoch 100] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24974341242049336 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26035661405188076 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500464921351655 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26005353069812637 [INFO] [stdout] [Epoch 101] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24975541088222747 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26034460859449676 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25003496209389414 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26006505428683313 [INFO] [stdout] [Epoch 102] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497664781368215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26033353538826254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25002432738662683 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260075683504497 [INFO] [stdout] [Epoch 103] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24977668643746598 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26032332202418274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25001451847176465 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600854877490075 [INFO] [stdout] [Epoch 104] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24978610243389401 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26031390171997104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500054712115999 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600945310358098 [INFO] [stdout] [Epoch 105] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24979478760653906 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26030521288242303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24999712645201883 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26010287241500096 [INFO] [stdout] [Epoch 106] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498027986671143 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26029719870388374 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24998942963494988 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601105663561593 [INFO] [stdout] [Epoch 107] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498101879282028 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602898067901466 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24998233044099694 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601176631033937 [INFO] [stdout] [Epoch 108] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24981700364424683 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602829888173273 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24997578245990132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26012420900291156 [INFO] [stdout] [Epoch 109] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24982329032614392 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602767002154493 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24996974288665785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601302468052257 [INFO] [stdout] [Epoch 110] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24982908903148646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260270899876658 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24996417224128267 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601358159439597 [INFO] [stdout] [Epoch 111] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24983443763232674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602655498861397 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24995903411038917 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26014095279305854 [INFO] [stdout] [Epoch 112] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24983937106220147 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26026061527397854 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499542949088697 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601456909040745 [INFO] [stdout] [Epoch 113] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24984392154402127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26025606378631305 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499499236601158 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015006122506845 [INFO] [stdout] [Epoch 114] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24984811880030394 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26025186567429404 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994589179333276 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015409230254744 [INFO] [stdout] [Epoch 115] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498519902471148 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602479934994542 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994217295661675 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015781046775277 [INFO] [stdout] [Epoch 116] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498555611729781 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26024442195421094 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499387428445652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601612400085079 [INFO] [stdout] [Epoch 117] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985885490391943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260241127696324 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993557903929076 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016440332774443 [INFO] [stdout] [Epoch 118] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986189295571434 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602380891962232 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499326608637939 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016732108973817 [INFO] [stdout] [Epoch 119] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986469517433318 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26023528659620215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992996924673397 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260170012355005 [INFO] [stdout] [Epoch 120] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986727986549556 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260232701580557 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992748659770844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017249470473786 [INFO] [stdout] [Epoch 121] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986966391417914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602303172558155 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499251966922268 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017478435559244 [INFO] [stdout] [Epoch 122] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987186289486002 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602281180402747 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992308456562148 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601768962655705 [INFO] [stdout] [Epoch 123] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498738911732029 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602260895621216 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992113641520344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017884423168997 [INFO] [stdout] [Epoch 124] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987576199986425 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602242185654691 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991933951001838 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601806409800804 [INFO] [stdout] [Epoch 125] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987748759701855 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602224928236926 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991768210761633 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018229824908756 [INFO] [stdout] [Epoch 126] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987907923817312 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602209010594987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499161533772848 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601838268659318 [INFO] [stdout] [Epoch 127] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498805473217903 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021943287120436 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991474332924696 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018523681741873 [INFO] [stdout] [Epoch 128] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498819014391985 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021807866474056 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991344274935917 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018653731516445 [INFO] [stdout] [Epoch 129] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988315043723358 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602168295909404 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499122431388816 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601877368557586 [INFO] [stdout] [Epoch 130] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988430247602034 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021567748769536 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991113665892525 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018884327626074 [INFO] [stdout] [Epoch 131] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498853650822707 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021461482660635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991011607921546 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260189863805389 [INFO] [stdout] [Epoch 132] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498863451984456 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602136346637766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990917473083385 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601908051107378 [INFO] [stdout] [Epoch 133] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988724922810268 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021273059442757 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990830646263112 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601916733423299 [INFO] [stdout] [Epoch 134] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988808307772384 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602118967110377 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499075056010237 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601924741727902 [INFO] [stdout] [Epoch 135] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498888521952979 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602111275647345 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990676691291416 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601932128344007 [INFO] [stdout] [Epoch 136] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988956160590892 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602104181296818 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990608557148963 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019389415328104 [INFO] [stdout] [Epoch 137] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989021594456162 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260209763770235 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990545712467702 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019452258091386 [INFO] [stdout] [Epoch 138] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989081948646036 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020916021064544 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990487746604736 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019510222322606 [INFO] [stdout] [Epoch 139] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249891376174937 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020860350711794 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990434280797963 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601956368674115 [INFO] [stdout] [Epoch 140] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989188964721276 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602080900220376 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990384965690865 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019613000667186 [INFO] [stdout] [Epoch 141] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989236325815864 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020761640019807 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990339479049398 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601965848630385 [INFO] [stdout] [Epoch 142] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989280010221315 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602071795468755 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499029752365631 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601970044084208 [INFO] [stdout] [Epoch 143] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989320303359847 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020677660760533 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499025882536881 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019739138402304 [INFO] [stdout] [Epoch 144] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989357468496698 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602064049495286 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990223131327138 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601977483182523 [INFO] [stdout] [Epoch 145] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989391748460085 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602060621441876 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990190208302207 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601980775432377 [INFO] [stdout] [Epoch 146] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498942336722769 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602057459516562 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990159841171491 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601983812100663 [INFO] [stdout] [Epoch 147] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989452531389925 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602054543059031 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499013183151337 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601986613028374 [INFO] [stdout] [Epoch 148] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498947943149967 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602051853012913 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499010599631047 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601989196516248 [INFO] [stdout] [Epoch 149] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989504243317226 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602049371801259 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499008216675375 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601991579444343 [INFO] [stdout] [Epoch 150] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989527128958652 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020470832116777 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990060187139426 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601993777382312 [INFO] [stdout] [Epoch 151] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989548237954926 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260204497229041 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990039913851575 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601995804691137 [INFO] [stdout] [Epoch 152] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498956770822888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020430252446036 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990021214423644 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019976746169465 [INFO] [stdout] [Epoch 153] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989585666996372 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260204122935219 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990003966672936 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260199939937757 [INFO] [stdout] [Epoch 154] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989602231597405 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260203957287876 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989988057902127 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602000990242359 [INFO] [stdout] [Epoch 155] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989617510262854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020380450008773 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989973384162945 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602002457605819 [INFO] [stdout] [Epoch 156] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989631602821533 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020366357353625 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498995984957696 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020038110555205 [INFO] [stdout] [Epoch 157] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989644601352473 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020353358740633 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989947365709042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602005059434744 [INFO] [stdout] [Epoch 158] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989656590786538 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602034136923673 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989935850989528 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020062109002545 [INFO] [stdout] [Epoch 159] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498966764946132 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020330310502554 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989925230181215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602007272975605 [INFO] [stdout] [Epoch 160] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989677849633005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020320110280337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989915433887805 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602008252600285 [INFO] [stdout] [Epoch 161] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498968725794843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020310701921906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498990639810039 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602009156175061 [INFO] [stdout] [Epoch 162] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989695935880596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602030202395316 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989898063779217 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602009989603804 [INFO] [stdout] [Epoch 163] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989703940130256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602029401967238 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989890376467958 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020107583320584 [INFO] [stdout] [Epoch 164] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989711322996405 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602028663677973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989883285937878 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602011467382625 [INFO] [stdout] [Epoch 165] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989718132718064 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020279827035553 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498987674585958 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602012121388376 [INFO] [stdout] [Epoch 166] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989724413789313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020273545945133 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989870713500345 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602012724622532 [INFO] [stdout] [Epoch 167] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498973020725015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020267752467996 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989865149444915 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020132810265706 [INFO] [stdout] [Epoch 168] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989735550954545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020262408749717 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989860017337884 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020137942359933 [INFO] [stdout] [Epoch 169] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989740479817854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020257479874603 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989855283646242 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602014267604068 [INFO] [stdout] [Epoch 170] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989745026044857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602025293363755 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989850917440173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602014704223746 [INFO] [stdout] [Epoch 171] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989749219340254 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020248740333596 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989846890191073 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015106947869 [INFO] [stdout] [Epoch 172] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989753087102742 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020244872563847 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989843175585005 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015478407804 [INFO] [stdout] [Epoch 173] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498975665460397 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020241305056424 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498983974935089 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015821030645 [INFO] [stdout] [Epoch 174] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498975994515374 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020238014501385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989836589101838 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016137055064 [INFO] [stdout] [Epoch 175] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989762980252267 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020234979398377 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989833674188922 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020164285459424 [INFO] [stdout] [Epoch 176] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989765779730677 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602023217991615 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989830985566197 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016697407863 [INFO] [stdout] [Epoch 177] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498976836188057 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020229597762995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989828505666326 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020169453975495 [INFO] [stdout] [Epoch 178] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498977074357353 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022721606729 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989826218285774 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017174135349 [INFO] [stdout] [Epoch 179] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989772940371377 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022501926708 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498982410847887 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020173851158224 [INFO] [stdout] [Epoch 180] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989774966627853 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020222993008607 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989822162460237 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017579717501 [INFO] [stdout] [Epoch 181] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498977683558238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022112405237 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989820367514687 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017759211899 [INFO] [stdout] [Epoch 182] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989778559446593 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202194001867 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981871191411 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017924771823 [INFO] [stdout] [Epoch 183] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989780149484106 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021781014795 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989817184840896 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201807747903 [INFO] [stdout] [Epoch 184] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989781616084136 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020216343546865 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989815776317234 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020182183312984 [INFO] [stdout] [Epoch 185] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989782968829333 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021499080076 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989814477139888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020183482489506 [INFO] [stdout] [Epoch 186] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989784216558475 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020213743070864 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989813278820094 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018468080859 [INFO] [stdout] [Epoch 187] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978536742413 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020212592204545 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989812173528095 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018578609998 [INFO] [stdout] [Epoch 188] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989786428945995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020211530682125 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989811154041977 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201868055856 [INFO] [stdout] [Epoch 189] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989787408059988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021055156766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989810213700459 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020187745926676 [INFO] [stdout] [Epoch 190] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978831116357 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020964846367 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980934635939 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020188613267364 [INFO] [stdout] [Epoch 191] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978914415757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020881546932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989808546351636 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201894132748 [INFO] [stdout] [Epoch 192] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978991248472 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020208047141874 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807808449951 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020190151176203 [INFO] [stdout] [Epoch 193] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989790621165242 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020207338461104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807127832964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019083179296 [INFO] [stdout] [Epoch 194] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989791274829581 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020668479655 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989806500053524 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020191459572195 [INFO] [stdout] [Epoch 195] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979187774878 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020608187716 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980592100976 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020192038615786 [INFO] [stdout] [Epoch 196] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792433862246 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020205525763535 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989805386918248 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020192572707157 [INFO] [stdout] [Epoch 197] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979294680361 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020501282204 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804894289236 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019306533604 [INFO] [stdout] [Epoch 198] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989793419924392 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020204539701136 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980443990393 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019351972123 [INFO] [stdout] [Epoch 199] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989793856315937 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020410330948 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804020793405 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019393883166 [INFO] [stdout] [Epoch 200] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979425882962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020203700795713 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989803634219185 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201943254058 [INFO] [stdout] [Epoch 201] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979463009543 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020332952982 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989803277655434 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019468196948 [INFO] [stdout] [Epoch 202] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989794972539192 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202987085983 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802948772394 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019501085247 [INFO] [stdout] [Epoch 203] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795288398417 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202671226705 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802645421139 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019531420365 [INFO] [stdout] [Epoch 204] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795579736915 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202379888163 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980236561962 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195594005135 [INFO] [stdout] [Epoch 205] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795848458268 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202111166757 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980210753959 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195852085115 [INFO] [stdout] [Epoch 206] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796096318284 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202018633067 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801869494813 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196090129855 [INFO] [stdout] [Epoch 207] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979632493647 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201634688483 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980164992988 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019630969476 [INFO] [stdout] [Epoch 208] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979653580661 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020142381831 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801447410176 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019651221444 [INFO] [stdout] [Epoch 209] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796730306513 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201229318374 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801260612454 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196699012127 [INFO] [stdout] [Epoch 210] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979690970703 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201049917835 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801088316183 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019687130838 [INFO] [stdout] [Epoch 211] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797075180356 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020088444449 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980092939558 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019703022895 [INFO] [stdout] [Epoch 212] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797227807695 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200731817134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980078281228 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019717681224 [INFO] [stdout] [Epoch 213] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797368586292 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200591038517 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800647608507 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019731201598 [INFO] [stdout] [Epoch 214] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797498435978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200461188814 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800522900862 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019743672361 [INFO] [stdout] [Epoch 215] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797618205187 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200341419586 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249898004078745 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019755174996 [INFO] [stdout] [Epoch 216] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797728676497 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020023094826 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800301777845 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197657846594 [INFO] [stdout] [Epoch 217] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979783057172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020012905302 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800203917678 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019775570676 [INFO] [stdout] [Epoch 218] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797924556628 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200035068103 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980011365456 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019784596985 [INFO] [stdout] [Epoch 219] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798011245318 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019994837939 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800030398748 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019792922564 [INFO] [stdout] [Epoch 220] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979809120419 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199868420496 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799953606237 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019800601815 [INFO] [stdout] [Epoch 221] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798164955726 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199794668963 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979988277526 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198076849105 [INFO] [stdout] [Epoch 222] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798232981786 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199726642884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979981744303 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198142181333 [INFO] [stdout] [Epoch 223] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979829572686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019966389779 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799757182662 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019820244169 [INFO] [stdout] [Epoch 224] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798353600925 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019960602373 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979970160041 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019825802393 [INFO] [stdout] [Epoch 225] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979840698211 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199552642526 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799650333122 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201983092912 [INFO] [stdout] [Epoch 226] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798456219212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199503405417 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799603045806 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019835657851 [INFO] [stdout] [Epoch 227] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798501633959 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199457990656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799559429493 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198400194827 [INFO] [stdout] [Epoch 228] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979854352307 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019941610154 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979951919919 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019844042511 [INFO] [stdout] [Epoch 229] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798582160244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199377464354 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979948209203 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198477532247 [INFO] [stdout] [Epoch 230] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798617797954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199341826633 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799447865585 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019851175869 [INFO] [stdout] [Epoch 231] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798650669034 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019930895554 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897994162962 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019854332807 [INFO] [stdout] [Epoch 232] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798680988276 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199278636286 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799387177605 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019857244665 [INFO] [stdout] [Epoch 233] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798708953778 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019925067078 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799360319528 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198599304717 [INFO] [stdout] [Epoch 234] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798734748275 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199224876267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799335546495 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198624077745 [INFO] [stdout] [Epoch 235] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979875854029 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199201084243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979931269665 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019864692758 [INFO] [stdout] [Epoch 236] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979878048528 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199179139236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979929162067 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019866800354 [INFO] [stdout] [Epoch 237] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798800726656 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019915889786 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799272180857 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019868744334 [INFO] [stdout] [Epoch 238] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798819396647 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199140227857 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799254250195 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198705374 [INFO] [stdout] [Epoch 239] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979883661725 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199123007237 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799237711524 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198721912663 [INFO] [stdout] [Epoch 240] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798852500994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019910712348 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799222456777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201987371674 [INFO] [stdout] [Epoch 241] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979886715166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199092472807 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799208386282 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019875123788 [INFO] [stdout] [Epoch 242] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979888066495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199078959505 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799195408116 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198764216035 [INFO] [stdout] [Epoch 243] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798893129192 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199066495264 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979918343747 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198776186665 [INFO] [stdout] [Epoch 244] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798904625796 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199054998655 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799172396124 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198787228005 [INFO] [stdout] [Epoch 245] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798915229905 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019904439452 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979916221194 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019879741219 [INFO] [stdout] [Epoch 246] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798925010798 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199034613617 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979915281836 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019880680576 [INFO] [stdout] [Epoch 247] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798934032395 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199025592017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799144154026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198815470075 [INFO] [stdout] [Epoch 248] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979894235361 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019901727078 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979913616233 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019882346177 [INFO] [stdout] [Epoch 249] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798950028844 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019900959554 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799128791043 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019883083305 [INFO] [stdout] [Epoch 250] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798957108234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019900251614 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799121992004 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198837632075 [INFO] [stdout] [Epoch 251] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798963638027 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019899598635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979911572079 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019884390328 [INFO] [stdout] [Epoch 252] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897989696609 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019898996346 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979910993641 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198849687654 [INFO] [stdout] [Epoch 253] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798975216224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019898440812 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979910460108 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019885502297 [INFO] [stdout] [Epoch 254] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798980340272 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019897928407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799099679952 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019885994408 [INFO] [stdout] [Epoch 255] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798985066516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198974557823 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799095140866 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019886448316 [INFO] [stdout] [Epoch 256] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979898942586 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198970198455 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979909095416 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198868669864 [INFO] [stdout] [Epoch 257] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798993446777 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198966177527 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979908709246 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019887253154 [INFO] [stdout] [Epoch 258] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979899715555 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019896246875 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979908353056 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019887609343 [INFO] [stdout] [Epoch 259] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799000576396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198959047897 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799080245179 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198879378803 [INFO] [stdout] [Epoch 260] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799003731678 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989558926 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799077214844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019888240914 [INFO] [stdout] [Epoch 261] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799006642022 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198952982254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799074419752 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198885204215 [INFO] [stdout] [Epoch 262] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799009326416 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019895029784 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979907184165 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198887782303 [INFO] [stdout] [Epoch 263] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979901180243 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894782182 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799069463706 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198890160257 [INFO] [stdout] [Epoch 264] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979901408622 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198945538026 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906727034 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889235361 [INFO] [stdout] [Epoch 265] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799016192726 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198943431505 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799065247262 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198894376656 [INFO] [stdout] [Epoch 266] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799018135675 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894148856 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799063381257 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198896242663 [INFO] [stdout] [Epoch 267] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799019927791 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893969642 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799061660098 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198897963814 [INFO] [stdout] [Epoch 268] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990215808 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893804341 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906007256 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889955135 [INFO] [stdout] [Epoch 269] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799023105475 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893651872 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905860826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890101563 [INFO] [stdout] [Epoch 270] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799024511783 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989351124 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799057257642 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198902366243 [INFO] [stdout] [Epoch 271] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902580892 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198933815253 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799056011858 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198903612013 [INFO] [stdout] [Epoch 272] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799027005363 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989326188 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799054862813 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890476106 [INFO] [stdout] [Epoch 273] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799028108917 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198931515237 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799053802944 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989058209 [INFO] [stdout] [Epoch 274] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902912681 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198930497324 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799052825368 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890679847 [INFO] [stdout] [Epoch 275] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030065668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198929558475 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799051923686 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890770015 [INFO] [stdout] [Epoch 276] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030931648 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198928692473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799051092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890853182 [INFO] [stdout] [Epoch 277] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799031730403 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892789372 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905032488 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890929893 [INFO] [stdout] [Epoch 278] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903246714 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892715696 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799049617323 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198910006487 [INFO] [stdout] [Epoch 279] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799033146678 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198926477417 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799048964678 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198910659104 [INFO] [stdout] [Epoch 280] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799033773472 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892585061 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799048362718 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891126108 [INFO] [stdout] [Epoch 281] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903435161 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892527247 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799047807473 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891181629 [INFO] [stdout] [Epoch 282] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799034884858 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892473921 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799047295344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891232842 [INFO] [stdout] [Epoch 283] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799035376706 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198924247356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799046822975 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198912800774 [INFO] [stdout] [Epoch 284] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799035830373 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892379367 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799046387268 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198913236475 [INFO] [stdout] [Epoch 285] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903624882 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198923375215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045985392 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198913638337 [INFO] [stdout] [Epoch 286] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036634788 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892298924 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904561471 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891400902 [INFO] [stdout] [Epoch 287] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036990798 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198922633225 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045272798 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891435091 [INFO] [stdout] [Epoch 288] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037319158 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892230485 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044957448 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891466626 [INFO] [stdout] [Epoch 289] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903762203 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892200197 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044666572 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914957127 [INFO] [stdout] [Epoch 290] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037901395 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989217226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044398264 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891522542 [INFO] [stdout] [Epoch 291] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038159058 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892146492 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990441508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915472875 [INFO] [stdout] [Epoch 292] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038396734 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198921227233 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043922542 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891570113 [INFO] [stdout] [Epoch 293] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038615954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892100801 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043712 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891591166 [INFO] [stdout] [Epoch 294] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038818156 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920805787 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043517805 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916105847 [INFO] [stdout] [Epoch 295] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039004665 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920619275 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043338684 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916284953 [INFO] [stdout] [Epoch 296] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039176686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920447235 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043173472 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891645016 [INFO] [stdout] [Epoch 297] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903933537 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892028855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904302107 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891660255 [INFO] [stdout] [Epoch 298] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039481725 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892014219 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042880523 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916743087 [INFO] [stdout] [Epoch 299] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039616706 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892000719 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042750885 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916872705 [INFO] [stdout] [Epoch 300] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039741215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891988268 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042631305 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916992293 [INFO] [stdout] [Epoch 301] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903985606 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891976783 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042521016 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917102566 [INFO] [stdout] [Epoch 302] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039961985 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891966188 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042419286 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891720429 [INFO] [stdout] [Epoch 303] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040059693 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919564164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042325447 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891729813 [INFO] [stdout] [Epoch 304] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040149813 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891947404 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042238878 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891738468 [INFO] [stdout] [Epoch 305] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040232946 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891939089 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042159047 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917464493 [INFO] [stdout] [Epoch 306] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040309615 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919314214 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904208541 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891753812 [INFO] [stdout] [Epoch 307] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904038034 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891924349 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990420175 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891760602 [INFO] [stdout] [Epoch 308] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040445562 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891917826 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041954852 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891766867 [INFO] [stdout] [Epoch 309] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040505728 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891911807 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041897076 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917726434 [INFO] [stdout] [Epoch 310] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040561217 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891906257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041843785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917779713 [INFO] [stdout] [Epoch 311] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040612393 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891901139 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041794625 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891782886 [INFO] [stdout] [Epoch 312] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040659608 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918964166 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904174928 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891787419 [INFO] [stdout] [Epoch 313] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040703153 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918920606 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041707467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917915993 [INFO] [stdout] [Epoch 314] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040743313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918880444 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041668895 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891795457 [INFO] [stdout] [Epoch 315] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040780364 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918843385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041633307 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917990145 [INFO] [stdout] [Epoch 316] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040814542 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989188092 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041600486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918022946 [INFO] [stdout] [Epoch 317] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040846053 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918777665 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041570226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989180532 [INFO] [stdout] [Epoch 318] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040875124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989187486 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904154231 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891808112 [INFO] [stdout] [Epoch 319] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040901942 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891872176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041516547 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891810686 [INFO] [stdout] [Epoch 320] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040926677 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891869702 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041492794 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918130605 [INFO] [stdout] [Epoch 321] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904094949 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989186742 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041470892 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989181525 [INFO] [stdout] [Epoch 322] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040970528 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918653153 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904145068 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918172693 [INFO] [stdout] [Epoch 323] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040989932 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891863373 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041432043 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891819133 [INFO] [stdout] [Epoch 324] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041007835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891861582 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041414848 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891820851 [INFO] [stdout] [Epoch 325] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041024346 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891859931 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904139901 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918224346 [INFO] [stdout] [Epoch 326] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904103956 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918584075 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904138438 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891823897 [INFO] [stdout] [Epoch 327] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041053617 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918570003 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041370883 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891825246 [INFO] [stdout] [Epoch 328] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041066582 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918557047 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904135844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891826488 [INFO] [stdout] [Epoch 329] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904107852 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891854509 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041346972 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918276355 [INFO] [stdout] [Epoch 330] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041089553 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918534054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041336383 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918286935 [INFO] [stdout] [Epoch 331] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041099717 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918523874 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041326616 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891829668 [INFO] [stdout] [Epoch 332] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041109095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891851448 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041317604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891830568 [INFO] [stdout] [Epoch 333] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041117747 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891850583 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990413093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891831398 [INFO] [stdout] [Epoch 334] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904112573 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918497833 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904130163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891832164 [INFO] [stdout] [Epoch 335] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041133093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891849046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041294558 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918328696 [INFO] [stdout] [Epoch 336] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041139876 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891848368 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041288055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918335197 [INFO] [stdout] [Epoch 337] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041146124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041282038 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183412 [INFO] [stdout] [Epoch 338] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041151914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891847161 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041276478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891834675 [INFO] [stdout] [Epoch 339] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041157246 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918466275 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904127137 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918351845 [INFO] [stdout] [Epoch 340] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041162147 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891846136 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041266653 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835656 [INFO] [stdout] [Epoch 341] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041166677 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891845681 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041262314 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836089 [INFO] [stdout] [Epoch 342] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041170854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891845264 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041258295 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918364895 [INFO] [stdout] [Epoch 343] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041174712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918448767 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041254598 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918368587 [INFO] [stdout] [Epoch 344] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041178265 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891844521 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041251182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918371995 [INFO] [stdout] [Epoch 345] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041181546 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918441917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904124803 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837512 [INFO] [stdout] [Epoch 346] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041184563 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843889 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904124513 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918378024 [INFO] [stdout] [Epoch 347] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041187355 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843608 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041242444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380694 [INFO] [stdout] [Epoch 348] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041189925 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184335 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123998 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383153 [INFO] [stdout] [Epoch 349] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990411923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843112 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041237704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838543 [INFO] [stdout] [Epoch 350] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041194494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842892 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041235597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918387527 [INFO] [stdout] [Epoch 351] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041196514 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041233665 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389437 [INFO] [stdout] [Epoch 352] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041198366 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918425025 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041231878 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839122 [INFO] [stdout] [Epoch 353] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120008 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423304 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041230235 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839285 [INFO] [stdout] [Epoch 354] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041201663 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842172 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041228714 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918394366 [INFO] [stdout] [Epoch 355] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041203123 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918420245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041227315 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839575 [INFO] [stdout] [Epoch 356] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041204466 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918418885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041226027 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839704 [INFO] [stdout] [Epoch 357] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120571 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841764 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224828 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839823 [INFO] [stdout] [Epoch 358] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120686 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918416476 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223731 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839932 [INFO] [stdout] [Epoch 359] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841541 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122272 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840032 [INFO] [stdout] [Epoch 360] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120889 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841443 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221777 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840124 [INFO] [stdout] [Epoch 361] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120979 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841352 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220923 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918402077 [INFO] [stdout] [Epoch 362] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041210603 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841269 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840287 [INFO] [stdout] [Epoch 363] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121137 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918411924 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219402 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184036 [INFO] [stdout] [Epoch 364] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212074 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218713 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918404275 [INFO] [stdout] [Epoch 365] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212735 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841053 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918404885 [INFO] [stdout] [Epoch 366] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213334 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918409915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217514 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405457 [INFO] [stdout] [Epoch 367] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840937 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216992 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840596 [INFO] [stdout] [Epoch 368] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214383 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918408854 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216493 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840644 [INFO] [stdout] [Epoch 369] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214855 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918408377 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121605 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406895 [INFO] [stdout] [Epoch 370] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215294 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840792 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041215627 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184073 [INFO] [stdout] [Epoch 371] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412157 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918407517 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121525 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840766 [INFO] [stdout] [Epoch 372] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121606 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918407145 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041214894 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840803 [INFO] [stdout] [Epoch 373] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121641 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840679 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121456 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408344 [INFO] [stdout] [Epoch 374] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121672 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840646 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121426 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408616 [INFO] [stdout] [Epoch 375] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041216998 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840618 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041213995 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840889 [INFO] [stdout] [Epoch 376] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041217264 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918405907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121374 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840914 [INFO] [stdout] [Epoch 377] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041217514 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918405635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041213506 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840935 [INFO] [stdout] [Epoch 378] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918405407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041213284 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409565 [INFO] [stdout] [Epoch 379] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041217947 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918405185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041213084 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840976 [INFO] [stdout] [Epoch 380] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041218136 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918405 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041212907 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409926 [INFO] [stdout] [Epoch 381] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041218314 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840481 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121274 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410087 [INFO] [stdout] [Epoch 382] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041218475 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840464 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041212585 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410226 [INFO] [stdout] [Epoch 383] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121862 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840448 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041212452 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841035 [INFO] [stdout] [Epoch 384] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041218747 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918404347 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041212318 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841048 [INFO] [stdout] [Epoch 385] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840421 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041212196 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184106 [INFO] [stdout] [Epoch 386] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041218996 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918404075 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041212085 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184107 [INFO] [stdout] [Epoch 387] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219102 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840396 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211974 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841079 [INFO] [stdout] [Epoch 388] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219202 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211885 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 389] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121929 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403753 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841095 [INFO] [stdout] [Epoch 390] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219374 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403664 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411025 [INFO] [stdout] [Epoch 391] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219463 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403564 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411097 [INFO] [stdout] [Epoch 392] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840348 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411164 [INFO] [stdout] [Epoch 393] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840339 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841122 [INFO] [stdout] [Epoch 394] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403326 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121143 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411264 [INFO] [stdout] [Epoch 395] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121973 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840326 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211386 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411297 [INFO] [stdout] [Epoch 396] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841133 [INFO] [stdout] [Epoch 397] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219812 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403153 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841137 [INFO] [stdout] [Epoch 398] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184031 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211264 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184114 [INFO] [stdout] [Epoch 399] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219896 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121122 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411436 [INFO] [stdout] [Epoch 400] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211175 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841147 [INFO] [stdout] [Epoch 401] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219973 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402965 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841149 [INFO] [stdout] [Epoch 402] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220007 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121112 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411513 [INFO] [stdout] [Epoch 403] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220034 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411536 [INFO] [stdout] [Epoch 404] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402837 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841156 [INFO] [stdout] [Epoch 405] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402804 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841157 [INFO] [stdout] [Epoch 406] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220118 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121102 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841158 [INFO] [stdout] [Epoch 407] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220134 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402737 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210997 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841158 [INFO] [stdout] [Epoch 408] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402715 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210986 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841159 [INFO] [stdout] [Epoch 409] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220173 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840269 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184116 [INFO] [stdout] [Epoch 410] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122019 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840266 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411613 [INFO] [stdout] [Epoch 411] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220206 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840262 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411613 [INFO] [stdout] [Epoch 412] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840261 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184116 [INFO] [stdout] [Epoch 413] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184026 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184116 [INFO] [stdout] [Epoch 414] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402576 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184116 [INFO] [stdout] [Epoch 415] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402565 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184116 [INFO] [stdout] [Epoch 416] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402554 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841159 [INFO] [stdout] [Epoch 417] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840253 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841159 [INFO] [stdout] [Epoch 418] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122025 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840253 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841159 [INFO] [stdout] [Epoch 419] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840251 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841157 [INFO] [stdout] [Epoch 420] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122025 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840251 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841156 [INFO] [stdout] [Epoch 421] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840251 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411547 [INFO] [stdout] [Epoch 422] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184025 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411525 [INFO] [stdout] [Epoch 423] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840249 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411525 [INFO] [stdout] [Epoch 424] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840249 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411513 [INFO] [stdout] [Epoch 425] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402465 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184115 [INFO] [stdout] [Epoch 426] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402465 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841149 [INFO] [stdout] [Epoch 427] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402465 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841149 [INFO] [stdout] [Epoch 428] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402443 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841148 [INFO] [stdout] [Epoch 429] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402443 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841147 [INFO] [stdout] [Epoch 430] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840242 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841146 [INFO] [stdout] [Epoch 431] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840242 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411447 [INFO] [stdout] [Epoch 432] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840242 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411436 [INFO] [stdout] [Epoch 433] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411436 [INFO] [stdout] [Epoch 434] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840239 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411425 [INFO] [stdout] [Epoch 435] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402376 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411425 [INFO] [stdout] [Epoch 436] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122025 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411414 [INFO] [stdout] [Epoch 437] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122025 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840235 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411414 [INFO] [stdout] [Epoch 438] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402326 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184114 [INFO] [stdout] [Epoch 439] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402326 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841139 [INFO] [stdout] [Epoch 440] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220262 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402304 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841139 [INFO] [stdout] [Epoch 441] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220262 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402304 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841138 [INFO] [stdout] [Epoch 442] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220268 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840228 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841138 [INFO] [stdout] [Epoch 443] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220268 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840228 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841137 [INFO] [stdout] [Epoch 444] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220268 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841136 [INFO] [stdout] [Epoch 445] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220273 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841136 [INFO] [stdout] [Epoch 446] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220273 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210886 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841133 [INFO] [stdout] [Epoch 447] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220262 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841131 [INFO] [stdout] [Epoch 448] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122025 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840225 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841131 [INFO] [stdout] [Epoch 449] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411297 [INFO] [stdout] [Epoch 450] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411275 [INFO] [stdout] [Epoch 451] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841125 [INFO] [stdout] [Epoch 452] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841125 [INFO] [stdout] [Epoch 453] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841124 [INFO] [stdout] [Epoch 454] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402204 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841123 [INFO] [stdout] [Epoch 455] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841122 [INFO] [stdout] [Epoch 456] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841122 [INFO] [stdout] [Epoch 457] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840217 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841121 [INFO] [stdout] [Epoch 458] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840217 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411197 [INFO] [stdout] [Epoch 459] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840216 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411186 [INFO] [stdout] [Epoch 460] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411175 [INFO] [stdout] [Epoch 461] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411164 [INFO] [stdout] [Epoch 462] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402127 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841115 [INFO] [stdout] [Epoch 463] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402127 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841115 [INFO] [stdout] [Epoch 464] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402127 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841114 [INFO] [stdout] [Epoch 465] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841113 [INFO] [stdout] [Epoch 466] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841112 [INFO] [stdout] [Epoch 467] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402077 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841111 [INFO] [stdout] [Epoch 468] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402077 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411097 [INFO] [stdout] [Epoch 469] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402077 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411086 [INFO] [stdout] [Epoch 470] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402065 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411075 [INFO] [stdout] [Epoch 471] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411064 [INFO] [stdout] [Epoch 472] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411064 [INFO] [stdout] [Epoch 473] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840203 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411047 [INFO] [stdout] [Epoch 474] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840203 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411036 [INFO] [stdout] [Epoch 475] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840202 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411036 [INFO] [stdout] [Epoch 476] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840201 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411025 [INFO] [stdout] [Epoch 477] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411014 [INFO] [stdout] [Epoch 478] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840199 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918411 [INFO] [stdout] [Epoch 479] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840199 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841098 [INFO] [stdout] [Epoch 480] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840199 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841098 [INFO] [stdout] [Epoch 481] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401966 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841097 [INFO] [stdout] [Epoch 482] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401966 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841096 [INFO] [stdout] [Epoch 483] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401954 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841096 [INFO] [stdout] [Epoch 484] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401943 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841096 [INFO] [stdout] [Epoch 485] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840192 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410936 [INFO] [stdout] [Epoch 486] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840192 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410925 [INFO] [stdout] [Epoch 487] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840192 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410925 [INFO] [stdout] [Epoch 488] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184019 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410914 [INFO] [stdout] [Epoch 489] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184019 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410903 [INFO] [stdout] [Epoch 490] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840189 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841089 [INFO] [stdout] [Epoch 491] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401877 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841089 [INFO] [stdout] [Epoch 492] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401866 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 493] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841087 [INFO] [stdout] [Epoch 494] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841086 [INFO] [stdout] [Epoch 495] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840183 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841086 [INFO] [stdout] [Epoch 496] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840183 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841085 [INFO] [stdout] [Epoch 497] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840181 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410825 [INFO] [stdout] [Epoch 498] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840181 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410825 [INFO] [stdout] [Epoch 499] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401793 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410825 [INFO] [stdout] [Epoch 500] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840178 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410814 [INFO] [stdout] [Epoch 501] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840177 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410803 [INFO] [stdout] [Epoch 502] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841078 [INFO] [stdout] [Epoch 503] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841078 [INFO] [stdout] [Epoch 504] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841078 [INFO] [stdout] [Epoch 505] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410764 [INFO] [stdout] [Epoch 506] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410753 [INFO] [stdout] [Epoch 507] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401716 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841073 [INFO] [stdout] [Epoch 508] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401716 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841073 [INFO] [stdout] [Epoch 509] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401716 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841072 [INFO] [stdout] [Epoch 510] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401694 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841072 [INFO] [stdout] [Epoch 511] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401694 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841071 [INFO] [stdout] [Epoch 512] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840167 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841071 [INFO] [stdout] [Epoch 513] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840167 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410675 [INFO] [stdout] [Epoch 514] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840167 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410675 [INFO] [stdout] [Epoch 515] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840166 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410664 [INFO] [stdout] [Epoch 516] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840165 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410664 [INFO] [stdout] [Epoch 517] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410653 [INFO] [stdout] [Epoch 518] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401627 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841064 [INFO] [stdout] [Epoch 519] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401627 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841064 [INFO] [stdout] [Epoch 520] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401605 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841063 [INFO] [stdout] [Epoch 521] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401605 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841062 [INFO] [stdout] [Epoch 522] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840158 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841062 [INFO] [stdout] [Epoch 523] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840158 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184106 [INFO] [stdout] [Epoch 524] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840158 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410586 [INFO] [stdout] [Epoch 525] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410586 [INFO] [stdout] [Epoch 526] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410575 [INFO] [stdout] [Epoch 527] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840155 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410564 [INFO] [stdout] [Epoch 528] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840154 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410564 [INFO] [stdout] [Epoch 529] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220245 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840154 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841054 [INFO] [stdout] [Epoch 530] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840152 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841053 [INFO] [stdout] [Epoch 531] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840151 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841052 [INFO] [stdout] [Epoch 532] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840151 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841051 [INFO] [stdout] [Epoch 533] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840149 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841051 [INFO] [stdout] [Epoch 534] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840149 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841049 [INFO] [stdout] [Epoch 535] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401477 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841048 [INFO] [stdout] [Epoch 536] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220234 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401466 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841047 [INFO] [stdout] [Epoch 537] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401466 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841046 [INFO] [stdout] [Epoch 538] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401455 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841045 [INFO] [stdout] [Epoch 539] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401444 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841045 [INFO] [stdout] [Epoch 540] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401444 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410437 [INFO] [stdout] [Epoch 541] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840143 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410425 [INFO] [stdout] [Epoch 542] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840142 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410414 [INFO] [stdout] [Epoch 543] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840142 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210975 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410403 [INFO] [stdout] [Epoch 544] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840141 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210975 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841039 [INFO] [stdout] [Epoch 545] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220223 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184014 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210975 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841038 [INFO] [stdout] [Epoch 546] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220218 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184014 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210975 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841037 [INFO] [stdout] [Epoch 547] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220218 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184014 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210975 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841036 [INFO] [stdout] [Epoch 548] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401377 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210986 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841035 [INFO] [stdout] [Epoch 549] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401377 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210986 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410337 [INFO] [stdout] [Epoch 550] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401377 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210986 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410326 [INFO] [stdout] [Epoch 551] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220206 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401366 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210986 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410314 [INFO] [stdout] [Epoch 552] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220206 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401355 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210997 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410303 [INFO] [stdout] [Epoch 553] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220206 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401355 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210997 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841029 [INFO] [stdout] [Epoch 554] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412202 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401344 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210997 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841028 [INFO] [stdout] [Epoch 555] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412202 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840133 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041210997 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841027 [INFO] [stdout] [Epoch 556] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220195 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840133 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211008 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841026 [INFO] [stdout] [Epoch 557] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220195 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840133 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211008 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841025 [INFO] [stdout] [Epoch 558] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122019 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840132 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211008 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410237 [INFO] [stdout] [Epoch 559] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220184 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840132 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121102 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841021 [INFO] [stdout] [Epoch 560] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220184 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840131 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121102 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184102 [INFO] [stdout] [Epoch 561] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122018 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840131 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121103 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410187 [INFO] [stdout] [Epoch 562] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220173 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840131 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121103 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410176 [INFO] [stdout] [Epoch 563] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220168 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184013 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121103 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410165 [INFO] [stdout] [Epoch 564] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220162 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184013 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410153 [INFO] [stdout] [Epoch 565] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220162 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840129 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841013 [INFO] [stdout] [Epoch 566] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220156 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840129 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841012 [INFO] [stdout] [Epoch 567] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840129 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841011 [INFO] [stdout] [Epoch 568] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220145 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840129 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211064 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184101 [INFO] [stdout] [Epoch 569] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122014 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840129 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211064 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410076 [INFO] [stdout] [Epoch 570] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220134 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410065 [INFO] [stdout] [Epoch 571] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122013 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401266 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918410054 [INFO] [stdout] [Epoch 572] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220123 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401266 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841004 [INFO] [stdout] [Epoch 573] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220118 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401266 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841002 [INFO] [stdout] [Epoch 574] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220118 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401266 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841002 [INFO] [stdout] [Epoch 575] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220123 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840124 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841002 [INFO] [stdout] [Epoch 576] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122013 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841001 [INFO] [stdout] [Epoch 577] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220134 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401216 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841001 [INFO] [stdout] [Epoch 578] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220134 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401194 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211064 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841001 [INFO] [stdout] [Epoch 579] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122014 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401194 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211064 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841 [INFO] [stdout] [Epoch 580] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220145 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840117 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891841 [INFO] [stdout] [Epoch 581] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840116 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409987 [INFO] [stdout] [Epoch 582] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840115 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409987 [INFO] [stdout] [Epoch 583] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220156 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840114 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409987 [INFO] [stdout] [Epoch 584] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220162 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409976 [INFO] [stdout] [Epoch 585] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220162 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401116 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409976 [INFO] [stdout] [Epoch 586] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220168 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401105 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409965 [INFO] [stdout] [Epoch 587] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220173 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211042 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409954 [INFO] [stdout] [Epoch 588] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220162 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409926 [INFO] [stdout] [Epoch 589] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220156 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211064 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409915 [INFO] [stdout] [Epoch 590] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220145 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840989 [INFO] [stdout] [Epoch 591] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122014 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211075 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840988 [INFO] [stdout] [Epoch 592] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122013 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840986 [INFO] [stdout] [Epoch 593] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220123 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211097 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840985 [INFO] [stdout] [Epoch 594] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220112 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211108 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409826 [INFO] [stdout] [Epoch 595] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412201 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121112 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409804 [INFO] [stdout] [Epoch 596] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121112 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840979 [INFO] [stdout] [Epoch 597] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220084 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401094 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121113 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840977 [INFO] [stdout] [Epoch 598] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220073 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401094 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840976 [INFO] [stdout] [Epoch 599] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401094 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409737 [INFO] [stdout] [Epoch 600] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220062 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409726 [INFO] [stdout] [Epoch 601] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220062 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401083 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409726 [INFO] [stdout] [Epoch 602] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220062 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840107 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409715 [INFO] [stdout] [Epoch 603] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409704 [INFO] [stdout] [Epoch 604] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840105 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409704 [INFO] [stdout] [Epoch 605] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840969 [INFO] [stdout] [Epoch 606] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840968 [INFO] [stdout] [Epoch 607] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840968 [INFO] [stdout] [Epoch 608] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840967 [INFO] [stdout] [Epoch 609] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918401005 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840966 [INFO] [stdout] [Epoch 610] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840964 [INFO] [stdout] [Epoch 611] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840963 [INFO] [stdout] [Epoch 612] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400983 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840963 [INFO] [stdout] [Epoch 613] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840097 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840962 [INFO] [stdout] [Epoch 614] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840097 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840961 [INFO] [stdout] [Epoch 615] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400955 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184096 [INFO] [stdout] [Epoch 616] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400944 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409587 [INFO] [stdout] [Epoch 617] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220068 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400944 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409587 [INFO] [stdout] [Epoch 618] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220062 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400933 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409576 [INFO] [stdout] [Epoch 619] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220062 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840092 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409565 [INFO] [stdout] [Epoch 620] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220062 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840092 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409554 [INFO] [stdout] [Epoch 621] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220062 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840091 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409543 [INFO] [stdout] [Epoch 622] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220057 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184009 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840953 [INFO] [stdout] [Epoch 623] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220057 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184009 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840952 [INFO] [stdout] [Epoch 624] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220057 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840089 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840951 [INFO] [stdout] [Epoch 625] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840088 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184095 [INFO] [stdout] [Epoch 626] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840088 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840949 [INFO] [stdout] [Epoch 627] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840088 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211175 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409476 [INFO] [stdout] [Epoch 628] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220045 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400866 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211175 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409465 [INFO] [stdout] [Epoch 629] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220045 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211175 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409454 [INFO] [stdout] [Epoch 630] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220045 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211175 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409443 [INFO] [stdout] [Epoch 631] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220045 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400844 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211186 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840943 [INFO] [stdout] [Epoch 632] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122004 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400833 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211186 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840942 [INFO] [stdout] [Epoch 633] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122004 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400833 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211186 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840941 [INFO] [stdout] [Epoch 634] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220034 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400833 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211197 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184094 [INFO] [stdout] [Epoch 635] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122003 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840082 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211197 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840939 [INFO] [stdout] [Epoch 636] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122003 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840081 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211197 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840937 [INFO] [stdout] [Epoch 637] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840081 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211208 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840936 [INFO] [stdout] [Epoch 638] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220018 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840081 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211208 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840935 [INFO] [stdout] [Epoch 639] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220018 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840081 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211208 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840934 [INFO] [stdout] [Epoch 640] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220012 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184008 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121122 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409326 [INFO] [stdout] [Epoch 641] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041220007 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184008 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121122 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409304 [INFO] [stdout] [Epoch 642] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840079 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121123 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409293 [INFO] [stdout] [Epoch 643] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219996 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840079 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121123 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840928 [INFO] [stdout] [Epoch 644] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219996 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840079 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211241 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840927 [INFO] [stdout] [Epoch 645] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121999 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840079 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211241 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840926 [INFO] [stdout] [Epoch 646] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219984 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840078 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211241 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840925 [INFO] [stdout] [Epoch 647] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121998 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840078 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211253 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409226 [INFO] [stdout] [Epoch 648] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219973 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211253 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409215 [INFO] [stdout] [Epoch 649] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219968 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211264 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409204 [INFO] [stdout] [Epoch 650] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211264 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409193 [INFO] [stdout] [Epoch 651] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840917 [INFO] [stdout] [Epoch 652] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400744 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840917 [INFO] [stdout] [Epoch 653] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400744 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840916 [INFO] [stdout] [Epoch 654] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400733 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840915 [INFO] [stdout] [Epoch 655] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840072 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840914 [INFO] [stdout] [Epoch 656] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840072 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840914 [INFO] [stdout] [Epoch 657] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184007 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211264 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409126 [INFO] [stdout] [Epoch 658] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184007 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409115 [INFO] [stdout] [Epoch 659] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184007 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409115 [INFO] [stdout] [Epoch 660] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840069 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840909 [INFO] [stdout] [Epoch 661] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840067 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840909 [INFO] [stdout] [Epoch 662] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840066 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840909 [INFO] [stdout] [Epoch 663] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840065 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409065 [INFO] [stdout] [Epoch 664] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840065 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409065 [INFO] [stdout] [Epoch 665] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840064 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409054 [INFO] [stdout] [Epoch 666] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840063 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409043 [INFO] [stdout] [Epoch 667] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840063 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840903 [INFO] [stdout] [Epoch 668] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400617 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840903 [INFO] [stdout] [Epoch 669] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400606 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840902 [INFO] [stdout] [Epoch 670] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400606 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840901 [INFO] [stdout] [Epoch 671] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400594 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409 [INFO] [stdout] [Epoch 672] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400583 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918409 [INFO] [stdout] [Epoch 673] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840057 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840899 [INFO] [stdout] [Epoch 674] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840056 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211286 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408977 [INFO] [stdout] [Epoch 675] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840056 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211286 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408965 [INFO] [stdout] [Epoch 676] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840055 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408965 [INFO] [stdout] [Epoch 677] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408954 [INFO] [stdout] [Epoch 678] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408954 [INFO] [stdout] [Epoch 679] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219957 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400517 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211286 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840893 [INFO] [stdout] [Epoch 680] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400517 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211297 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840891 [INFO] [stdout] [Epoch 681] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840053 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184089 [INFO] [stdout] [Epoch 682] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840053 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408877 [INFO] [stdout] [Epoch 683] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400517 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408866 [INFO] [stdout] [Epoch 684] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400517 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408866 [INFO] [stdout] [Epoch 685] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408854 [INFO] [stdout] [Epoch 686] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400494 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408843 [INFO] [stdout] [Epoch 687] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400494 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408843 [INFO] [stdout] [Epoch 688] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840047 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840883 [INFO] [stdout] [Epoch 689] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840047 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840882 [INFO] [stdout] [Epoch 690] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840882 [INFO] [stdout] [Epoch 691] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840045 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408805 [INFO] [stdout] [Epoch 692] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840045 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408793 [INFO] [stdout] [Epoch 693] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840044 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840878 [INFO] [stdout] [Epoch 694] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840043 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840877 [INFO] [stdout] [Epoch 695] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121993 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840043 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840877 [INFO] [stdout] [Epoch 696] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400417 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840876 [INFO] [stdout] [Epoch 697] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184004 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840875 [INFO] [stdout] [Epoch 698] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184004 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840874 [INFO] [stdout] [Epoch 699] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840039 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408727 [INFO] [stdout] [Epoch 700] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840038 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408727 [INFO] [stdout] [Epoch 701] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840038 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121132 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408716 [INFO] [stdout] [Epoch 702] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840038 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408705 [INFO] [stdout] [Epoch 703] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408693 [INFO] [stdout] [Epoch 704] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840868 [INFO] [stdout] [Epoch 705] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219912 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840867 [INFO] [stdout] [Epoch 706] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219912 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400345 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840866 [INFO] [stdout] [Epoch 707] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219907 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400333 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840865 [INFO] [stdout] [Epoch 708] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219907 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400333 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840864 [INFO] [stdout] [Epoch 709] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219907 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400333 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408627 [INFO] [stdout] [Epoch 710] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412199 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840032 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408616 [INFO] [stdout] [Epoch 711] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412199 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840031 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408605 [INFO] [stdout] [Epoch 712] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412199 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840031 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211352 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408594 [INFO] [stdout] [Epoch 713] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412199 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184003 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211352 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840858 [INFO] [stdout] [Epoch 714] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219896 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840029 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211352 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840857 [INFO] [stdout] [Epoch 715] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121989 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840029 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211364 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840856 [INFO] [stdout] [Epoch 716] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121989 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840029 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211364 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840855 [INFO] [stdout] [Epoch 717] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219884 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840029 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211364 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840854 [INFO] [stdout] [Epoch 718] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840028 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211375 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840852 [INFO] [stdout] [Epoch 719] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211375 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840851 [INFO] [stdout] [Epoch 720] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219873 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211375 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184085 [INFO] [stdout] [Epoch 721] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219868 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211386 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840849 [INFO] [stdout] [Epoch 722] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219868 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211386 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408477 [INFO] [stdout] [Epoch 723] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219862 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211397 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408466 [INFO] [stdout] [Epoch 724] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400256 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211397 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408444 [INFO] [stdout] [Epoch 725] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121985 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211408 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840843 [INFO] [stdout] [Epoch 726] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219846 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211408 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840842 [INFO] [stdout] [Epoch 727] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121984 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211408 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840841 [INFO] [stdout] [Epoch 728] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121142 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184084 [INFO] [stdout] [Epoch 729] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219835 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121142 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840839 [INFO] [stdout] [Epoch 730] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121143 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408366 [INFO] [stdout] [Epoch 731] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219823 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121143 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408355 [INFO] [stdout] [Epoch 732] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121144 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408344 [INFO] [stdout] [Epoch 733] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219812 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840022 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121144 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840833 [INFO] [stdout] [Epoch 734] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219807 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840022 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211452 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840831 [INFO] [stdout] [Epoch 735] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412198 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840022 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211463 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184083 [INFO] [stdout] [Epoch 736] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219796 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840022 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211463 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840829 [INFO] [stdout] [Epoch 737] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121979 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840022 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211475 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408277 [INFO] [stdout] [Epoch 738] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840022 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211475 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840825 [INFO] [stdout] [Epoch 739] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840021 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840824 [INFO] [stdout] [Epoch 740] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840021 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840824 [INFO] [stdout] [Epoch 741] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184002 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408216 [INFO] [stdout] [Epoch 742] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184002 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408205 [INFO] [stdout] [Epoch 743] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184002 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408194 [INFO] [stdout] [Epoch 744] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184002 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840818 [INFO] [stdout] [Epoch 745] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840018 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840818 [INFO] [stdout] [Epoch 746] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840018 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840816 [INFO] [stdout] [Epoch 747] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840018 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840816 [INFO] [stdout] [Epoch 748] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840816 [INFO] [stdout] [Epoch 749] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840815 [INFO] [stdout] [Epoch 750] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840815 [INFO] [stdout] [Epoch 751] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840813 [INFO] [stdout] [Epoch 752] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840813 [INFO] [stdout] [Epoch 753] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408116 [INFO] [stdout] [Epoch 754] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408105 [INFO] [stdout] [Epoch 755] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408094 [INFO] [stdout] [Epoch 756] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400095 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408094 [INFO] [stdout] [Epoch 757] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400084 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408083 [INFO] [stdout] [Epoch 758] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840007 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408083 [INFO] [stdout] [Epoch 759] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840807 [INFO] [stdout] [Epoch 760] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840807 [INFO] [stdout] [Epoch 761] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840004 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840805 [INFO] [stdout] [Epoch 762] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840004 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840804 [INFO] [stdout] [Epoch 763] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840003 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840804 [INFO] [stdout] [Epoch 764] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840804 [INFO] [stdout] [Epoch 765] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840804 [INFO] [stdout] [Epoch 766] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840803 [INFO] [stdout] [Epoch 767] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399984 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408016 [INFO] [stdout] [Epoch 768] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839997 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408016 [INFO] [stdout] [Epoch 769] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839997 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918408005 [INFO] [stdout] [Epoch 770] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407994 [INFO] [stdout] [Epoch 771] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407983 [INFO] [stdout] [Epoch 772] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407966 [INFO] [stdout] [Epoch 773] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407955 [INFO] [stdout] [Epoch 774] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407955 [INFO] [stdout] [Epoch 775] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839993 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407944 [INFO] [stdout] [Epoch 776] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839993 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407933 [INFO] [stdout] [Epoch 777] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840792 [INFO] [stdout] [Epoch 778] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840792 [INFO] [stdout] [Epoch 779] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840791 [INFO] [stdout] [Epoch 780] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399895 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184079 [INFO] [stdout] [Epoch 781] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840789 [INFO] [stdout] [Epoch 782] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840788 [INFO] [stdout] [Epoch 783] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840788 [INFO] [stdout] [Epoch 784] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839986 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407866 [INFO] [stdout] [Epoch 785] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839986 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407855 [INFO] [stdout] [Epoch 786] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839986 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407844 [INFO] [stdout] [Epoch 787] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839985 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407833 [INFO] [stdout] [Epoch 788] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399834 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840782 [INFO] [stdout] [Epoch 789] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399834 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840781 [INFO] [stdout] [Epoch 790] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399823 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184078 [INFO] [stderr] error: test failed, to rerun pass `--lib` [INFO] [stdout] [Epoch 791] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839981 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184078 [INFO] [stdout] [Epoch 792] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839981 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840779 [INFO] [stdout] [Epoch 793] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839981 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840778 [INFO] [stdout] [Epoch 794] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839981 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407766 [INFO] [stdout] [Epoch 795] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183998 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407755 [INFO] [stdout] [Epoch 796] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839979 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407755 [INFO] [stdout] [Epoch 797] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839977 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407755 [INFO] [stdout] [Epoch 798] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399756 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407755 [INFO] [stdout] [Epoch 799] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407755 [INFO] [stdout] [Epoch 800] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407755 [INFO] [stdout] [Epoch 801] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839971 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407755 [INFO] [stdout] [Epoch 802] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121979 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183997 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407744 [INFO] [stdout] [Epoch 803] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839969 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407733 [INFO] [stdout] [Epoch 804] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219785 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839969 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407733 [INFO] [stdout] [Epoch 805] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121979 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839968 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211497 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840771 [INFO] [stdout] [Epoch 806] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839968 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407683 [INFO] [stdout] [Epoch 807] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839968 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840767 [INFO] [stdout] [Epoch 808] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839968 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121152 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840766 [INFO] [stdout] [Epoch 809] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839968 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840765 [INFO] [stdout] [Epoch 810] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839967 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840764 [INFO] [stdout] [Epoch 811] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840763 [INFO] [stdout] [Epoch 812] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407617 [INFO] [stdout] [Epoch 813] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407594 [INFO] [stdout] [Epoch 814] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219735 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407583 [INFO] [stdout] [Epoch 815] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121973 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840757 [INFO] [stdout] [Epoch 816] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219724 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840756 [INFO] [stdout] [Epoch 817] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219718 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840755 [INFO] [stdout] [Epoch 818] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840753 [INFO] [stdout] [Epoch 819] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219707 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399645 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407517 [INFO] [stdout] [Epoch 820] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412197 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399645 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407506 [INFO] [stdout] [Epoch 821] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219696 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399645 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407494 [INFO] [stdout] [Epoch 822] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840747 [INFO] [stdout] [Epoch 823] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840747 [INFO] [stdout] [Epoch 824] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219696 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399623 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840747 [INFO] [stdout] [Epoch 825] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219696 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839961 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840747 [INFO] [stdout] [Epoch 826] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412197 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183996 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840746 [INFO] [stdout] [Epoch 827] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219707 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839959 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840746 [INFO] [stdout] [Epoch 828] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839957 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840746 [INFO] [stdout] [Epoch 829] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839957 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840745 [INFO] [stdout] [Epoch 830] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219718 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839954 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840745 [INFO] [stdout] [Epoch 831] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219724 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839954 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840745 [INFO] [stdout] [Epoch 832] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219724 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839952 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840744 [INFO] [stdout] [Epoch 833] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121973 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839952 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840744 [INFO] [stdout] [Epoch 834] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219735 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840743 [INFO] [stdout] [Epoch 835] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219735 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840743 [INFO] [stdout] [Epoch 836] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407417 [INFO] [stdout] [Epoch 837] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407417 [INFO] [stdout] [Epoch 838] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839945 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407417 [INFO] [stdout] [Epoch 839] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839945 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184074 [INFO] [stdout] [Epoch 840] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839944 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184074 [INFO] [stdout] [Epoch 841] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839943 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840739 [INFO] [stdout] [Epoch 842] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839942 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840739 [INFO] [stdout] [Epoch 843] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399406 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407367 [INFO] [stdout] [Epoch 844] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399406 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407367 [INFO] [stdout] [Epoch 845] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399406 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407356 [INFO] [stdout] [Epoch 846] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407345 [INFO] [stdout] [Epoch 847] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399395 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211563 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840732 [INFO] [stdout] [Epoch 848] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219735 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399395 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184073 [INFO] [stdout] [Epoch 849] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219724 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399395 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840729 [INFO] [stdout] [Epoch 850] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399406 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840728 [INFO] [stdout] [Epoch 851] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407267 [INFO] [stdout] [Epoch 852] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412197 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399395 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407245 [INFO] [stdout] [Epoch 853] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219696 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399395 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840722 [INFO] [stdout] [Epoch 854] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399395 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840722 [INFO] [stdout] [Epoch 855] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840721 [INFO] [stdout] [Epoch 856] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840721 [INFO] [stdout] [Epoch 857] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184072 [INFO] [stdout] [Epoch 858] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840719 [INFO] [stdout] [Epoch 859] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840719 [INFO] [stdout] [Epoch 860] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839934 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840718 [INFO] [stdout] [Epoch 861] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839934 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407167 [INFO] [stdout] [Epoch 862] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839934 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407156 [INFO] [stdout] [Epoch 863] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211608 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407156 [INFO] [stdout] [Epoch 864] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121162 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407145 [INFO] [stdout] [Epoch 865] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121162 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840713 [INFO] [stdout] [Epoch 866] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399307 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121162 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407117 [INFO] [stdout] [Epoch 867] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121162 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407117 [INFO] [stdout] [Epoch 868] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121162 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407106 [INFO] [stdout] [Epoch 869] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839928 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121162 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407095 [INFO] [stdout] [Epoch 870] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121162 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407084 [INFO] [stdout] [Epoch 871] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121968 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121162 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840707 [INFO] [stdout] [Epoch 872] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121968 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840707 [INFO] [stdout] [Epoch 873] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121968 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840706 [INFO] [stdout] [Epoch 874] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840705 [INFO] [stdout] [Epoch 875] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840704 [INFO] [stdout] [Epoch 876] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840703 [INFO] [stdout] [Epoch 877] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407017 [INFO] [stdout] [Epoch 878] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918407006 [INFO] [stdout] [Epoch 879] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406995 [INFO] [stdout] [Epoch 880] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219662 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839921 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406995 [INFO] [stdout] [Epoch 881] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219662 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183992 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406984 [INFO] [stdout] [Epoch 882] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219657 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183992 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840697 [INFO] [stdout] [Epoch 883] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219657 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183992 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840696 [INFO] [stdout] [Epoch 884] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121965 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183992 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840695 [INFO] [stdout] [Epoch 885] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839919 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211663 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840694 [INFO] [stdout] [Epoch 886] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839918 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211663 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840693 [INFO] [stdout] [Epoch 887] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121964 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839918 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211663 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406917 [INFO] [stdout] [Epoch 888] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121964 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839918 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211674 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406906 [INFO] [stdout] [Epoch 889] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121964 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211663 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406906 [INFO] [stdout] [Epoch 890] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406906 [INFO] [stdout] [Epoch 891] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219657 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406906 [INFO] [stdout] [Epoch 892] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219662 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406895 [INFO] [stdout] [Epoch 893] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219657 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406884 [INFO] [stdout] [Epoch 894] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121965 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211663 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840687 [INFO] [stdout] [Epoch 895] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211663 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406845 [INFO] [stdout] [Epoch 896] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219646 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211674 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406834 [INFO] [stdout] [Epoch 897] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121964 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211674 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840682 [INFO] [stdout] [Epoch 898] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219635 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211685 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840681 [INFO] [stdout] [Epoch 899] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121963 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183991 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211685 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184068 [INFO] [stdout] [Epoch 900] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219624 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183991 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211697 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840679 [INFO] [stdout] [Epoch 901] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219618 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211697 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840678 [INFO] [stdout] [Epoch 902] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840677 [INFO] [stdout] [Epoch 903] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406745 [INFO] [stdout] [Epoch 904] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412196 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406734 [INFO] [stdout] [Epoch 905] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406723 [INFO] [stdout] [Epoch 906] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121959 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840671 [INFO] [stdout] [Epoch 907] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219585 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184067 [INFO] [stdout] [Epoch 908] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121958 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121174 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840668 [INFO] [stdout] [Epoch 909] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219574 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121174 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840667 [INFO] [stdout] [Epoch 910] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219568 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211752 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406656 [INFO] [stdout] [Epoch 911] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219563 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211763 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406645 [INFO] [stdout] [Epoch 912] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219551 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211763 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406623 [INFO] [stdout] [Epoch 913] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219551 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211763 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406623 [INFO] [stdout] [Epoch 914] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219557 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211752 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406623 [INFO] [stdout] [Epoch 915] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219563 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211752 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840661 [INFO] [stdout] [Epoch 916] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219563 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211752 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840661 [INFO] [stdout] [Epoch 917] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219568 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399023 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121174 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840661 [INFO] [stdout] [Epoch 918] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219574 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399023 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121174 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840661 [INFO] [stdout] [Epoch 919] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121958 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398996 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121174 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184066 [INFO] [stdout] [Epoch 920] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121958 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398996 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184066 [INFO] [stdout] [Epoch 921] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219585 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840659 [INFO] [stdout] [Epoch 922] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219585 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840659 [INFO] [stdout] [Epoch 923] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121959 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839895 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840659 [INFO] [stdout] [Epoch 924] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839895 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840658 [INFO] [stdout] [Epoch 925] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839894 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840658 [INFO] [stdout] [Epoch 926] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412196 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839893 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840656 [INFO] [stdout] [Epoch 927] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412196 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839892 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840656 [INFO] [stdout] [Epoch 928] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412196 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840656 [INFO] [stdout] [Epoch 929] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398896 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840655 [INFO] [stdout] [Epoch 930] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840655 [INFO] [stdout] [Epoch 931] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840654 [INFO] [stdout] [Epoch 932] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839886 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840654 [INFO] [stdout] [Epoch 933] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839886 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840653 [INFO] [stdout] [Epoch 934] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219618 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211697 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840653 [INFO] [stdout] [Epoch 935] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219618 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406506 [INFO] [stdout] [Epoch 936] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121172 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406495 [INFO] [stdout] [Epoch 937] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412196 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406473 [INFO] [stdout] [Epoch 938] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121959 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406473 [INFO] [stdout] [Epoch 939] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121959 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840646 [INFO] [stdout] [Epoch 940] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121959 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839883 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121174 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840644 [INFO] [stdout] [Epoch 941] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121958 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211752 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840643 [INFO] [stdout] [Epoch 942] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219574 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211763 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406406 [INFO] [stdout] [Epoch 943] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219563 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211774 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406395 [INFO] [stdout] [Epoch 944] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219551 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406373 [INFO] [stdout] [Epoch 945] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840635 [INFO] [stdout] [Epoch 946] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840635 [INFO] [stdout] [Epoch 947] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840634 [INFO] [stdout] [Epoch 948] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839883 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840633 [INFO] [stdout] [Epoch 949] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840633 [INFO] [stdout] [Epoch 950] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840632 [INFO] [stdout] [Epoch 951] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398807 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406306 [INFO] [stdout] [Epoch 952] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406306 [INFO] [stdout] [Epoch 953] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406295 [INFO] [stdout] [Epoch 954] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840628 [INFO] [stdout] [Epoch 955] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840627 [INFO] [stdout] [Epoch 956] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840627 [INFO] [stdout] [Epoch 957] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406257 [INFO] [stdout] [Epoch 958] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839876 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406245 [INFO] [stdout] [Epoch 959] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839875 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406234 [INFO] [stdout] [Epoch 960] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839875 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406234 [INFO] [stdout] [Epoch 961] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219524 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839875 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406223 [INFO] [stdout] [Epoch 962] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219524 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839874 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840621 [INFO] [stdout] [Epoch 963] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219524 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839873 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184062 [INFO] [stdout] [Epoch 964] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839873 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840619 [INFO] [stdout] [Epoch 965] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839873 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840619 [INFO] [stdout] [Epoch 966] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839871 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840618 [INFO] [stdout] [Epoch 967] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219513 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840617 [INFO] [stdout] [Epoch 968] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219513 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406157 [INFO] [stdout] [Epoch 969] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406146 [INFO] [stdout] [Epoch 970] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219507 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839869 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406134 [INFO] [stdout] [Epoch 971] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219501 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839869 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121183 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406123 [INFO] [stdout] [Epoch 972] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219501 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839868 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121183 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840611 [INFO] [stdout] [Epoch 973] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839868 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121183 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989184061 [INFO] [stdout] [Epoch 974] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839868 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121184 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840609 [INFO] [stdout] [Epoch 975] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121949 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839868 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121184 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840609 [INFO] [stdout] [Epoch 976] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121949 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839867 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121184 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840608 [INFO] [stdout] [Epoch 977] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219485 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398657 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211852 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840607 [INFO] [stdout] [Epoch 978] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121948 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398657 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211852 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406057 [INFO] [stdout] [Epoch 979] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219485 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398657 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211852 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406046 [INFO] [stdout] [Epoch 980] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121948 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398646 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211863 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406034 [INFO] [stdout] [Epoch 981] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219474 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398646 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211863 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406023 [INFO] [stdout] [Epoch 982] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219474 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211863 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918406007 [INFO] [stdout] [Epoch 983] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219468 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211874 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405996 [INFO] [stdout] [Epoch 984] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219463 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211874 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405985 [INFO] [stdout] [Epoch 985] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219457 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211885 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840596 [INFO] [stdout] [Epoch 986] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219457 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211885 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840595 [INFO] [stdout] [Epoch 987] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219452 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211885 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840594 [INFO] [stdout] [Epoch 988] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219446 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398624 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211896 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840593 [INFO] [stdout] [Epoch 989] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121944 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918398624 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211896 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840592 [INFO] [stdout] [Epoch 990] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219435 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839861 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405907 [INFO] [stdout] [Epoch 991] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839861 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041211908 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405896 [INFO] [stdout] [Epoch 992] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219424 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839861 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405885 [INFO] [stdout] [Epoch 993] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219418 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839861 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918405874 [INFO] [stdout] [Epoch 994] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219413 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839861 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121193 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840585 [INFO] [stdout] [Epoch 995] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219407 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839861 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840585 [INFO] [stdout] [Epoch 996] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219413 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839859 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121193 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840584 [INFO] [stdout] [Epoch 997] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219407 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839859 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840584 [INFO] [stdout] [Epoch 998] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219413 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839859 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121193 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840583 [INFO] [stdout] [Epoch 999] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041219407 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839858 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891840583 [INFO] [stdout] [INFO] [stdout] thread 'models::sequential::test_sequential_xor1' panicked at src/models/sequential.rs:242:5: [INFO] [stdout] assertion `left == right` failed [INFO] [stdout] left: [0.0, 0.0, 0.0, 0.0] [INFO] [stdout] right: [0.0, 1.0, 1.0, 0.0] [INFO] [stdout] stack backtrace: [INFO] [stdout] 0: 0x7d88034816b2 - std::backtrace_rs::backtrace::libunwind::trace::h559918daaaf51ab7 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/../../backtrace/src/backtrace/libunwind.rs:117:9 [INFO] [stdout] 1: 0x7d88034816b2 - std::backtrace_rs::backtrace::trace_unsynchronized::hb04fbcf80d07af8b [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/../../backtrace/src/backtrace/mod.rs:66:14 [INFO] [stdout] 2: 0x7d88034816b2 - std::sys::backtrace::_print_fmt::h7c0bbbbfac0065d4 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/sys/backtrace.rs:66:9 [INFO] [stdout] 3: 0x7d88034816b2 - ::fmt::hb62c8ed31943daa5 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/sys/backtrace.rs:39:26 [INFO] [stdout] 4: 0x7d88034bc613 - core::fmt::rt::Argument::fmt::he5eaa7dd607ed4c9 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/fmt/rt.rs:173:76 [INFO] [stdout] 5: 0x7d88034bc613 - core::fmt::write::h375399f8cb90b45a [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/fmt/mod.rs:1460:25 [INFO] [stdout] 6: 0x7d880347e9a3 - std::io::default_write_fmt::hdc1b4dd565dd0099 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/io/mod.rs:639:11 [INFO] [stdout] 7: 0x7d880347e9a3 - std::io::Write::write_fmt::h29f6044e9bc43c23 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/io/mod.rs:1954:13 [INFO] [stdout] 8: 0x7d8803481502 - std::sys::backtrace::BacktraceLock::print::ha189c586374f916a [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/sys/backtrace.rs:42:9 [INFO] [stdout] 9: 0x7d8803482c7c - std::panicking::default_hook::{{closure}}::ha3a26c98ff210e12 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:300:27 [INFO] [stdout] 10: 0x7d8803482ad2 - std::panicking::default_hook::h8c8a86b4390ab794 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:324:9 [INFO] [stdout] 11: 0x7d88033ed0f4 - as core::ops::function::Fn>::call::ha39ae63ed1e9a130 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/alloc/src/boxed.rs:1980:9 [INFO] [stdout] 12: 0x7d88033ed0f4 - test::test_main_with_exit_callback::{{closure}}::h9df7c328ebe18c28 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/test/src/lib.rs:145:21 [INFO] [stdout] 13: 0x7d8803483603 - as core::ops::function::Fn>::call::h96b7201b552e9069 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/alloc/src/boxed.rs:1980:9 [INFO] [stdout] 14: 0x7d8803483603 - std::panicking::rust_panic_with_hook::hb3b66c2e80efa371 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:841:13 [INFO] [stdout] 15: 0x7d88034833ca - std::panicking::begin_panic_handler::{{closure}}::h9c68d0f839e62070 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:706:13 [INFO] [stdout] 16: 0x7d8803481ba9 - std::sys::backtrace::__rust_end_short_backtrace::h68d22ddde4a73ad6 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/sys/backtrace.rs:168:18 [INFO] [stdout] 17: 0x7d880348305d - __rustc[f4ffc7196a45a630]::rust_begin_unwind [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:697:5 [INFO] [stdout] 18: 0x7d880337a550 - core::panicking::panic_fmt::h8cdd4c81eb9069aa [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/panicking.rs:75:14 [INFO] [stdout] 19: 0x7d880337a8a3 - core::panicking::assert_failed_inner::h483faaa3ae844fd5 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/panicking.rs:432:17 [INFO] [stdout] 20: 0x7d880339ba83 - core::panicking::assert_failed::h7bab51bddb0c9735 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/panicking.rs:387:5 [INFO] [stdout] 21: 0x7d8803384ff5 - easynn::models::sequential::test_sequential_xor1::ha1f1dbf3ca8df640 [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:242:5 [INFO] [stdout] 22: 0x7d8803383a77 - easynn::models::sequential::test_sequential_xor1::{{closure}}::h928d3f0e0502a8a3 [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:205:26 [INFO] [stdout] 23: 0x7d8803394de6 - core::ops::function::FnOnce::call_once::hc70e2de8c906e3ef [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/ops/function.rs:250:5 [INFO] [stdout] 24: 0x7d88033f27eb - core::ops::function::FnOnce::call_once::h9633dcf760ae81b2 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/ops/function.rs:250:5 [INFO] [stdout] 25: 0x7d88033f27eb - test::__rust_begin_short_backtrace::h12ad5e04c8d7b4a5 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/test/src/lib.rs:648:18 [INFO] [stdout] 26: 0x7d88033f1a5e - test::run_test_in_process::{{closure}}::he596b4fd3fa4893c [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/test/src/lib.rs:671:74 [INFO] [stdout] 27: 0x7d88033f1a5e - as core::ops::function::FnOnce<()>>::call_once::hc746bc3fa75190e0 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/panic/unwind_safe.rs:272:9 [INFO] [stdout] 28: 0x7d88033f1a5e - std::panicking::catch_unwind::do_call::hf4843906108d6299 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:589:40 [INFO] [stdout] 29: 0x7d88033f1a5e - std::panicking::catch_unwind::h849d4e8b03577bb9 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:552:19 [INFO] [stdout] 30: 0x7d88033f1a5e - std::panic::catch_unwind::ha1f814c1dec025d2 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panic.rs:359:14 [INFO] [stdout] 31: 0x7d88033f1a5e - test::run_test_in_process::h542aad3fe61255e7 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/test/src/lib.rs:671:27 [INFO] [stdout] 32: 0x7d88033f1a5e - test::run_test::{{closure}}::h612788d75908cb63 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/test/src/lib.rs:592:43 [INFO] [stdout] 33: 0x7d88033b68e4 - test::run_test::{{closure}}::hbfeea3bcb7245123 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/test/src/lib.rs:622:41 [INFO] [stdout] 34: 0x7d88033b68e4 - std::sys::backtrace::__rust_begin_short_backtrace::h72542b83b4f87d5b [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/sys/backtrace.rs:152:18 [INFO] [stdout] 35: 0x7d88033ba0da - std::thread::Builder::spawn_unchecked_::{{closure}}::{{closure}}::hff26a7547ea762c9 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/thread/mod.rs:559:17 [INFO] [stdout] 36: 0x7d88033ba0da - as core::ops::function::FnOnce<()>>::call_once::hbee49bc759312884 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/panic/unwind_safe.rs:272:9 [INFO] [stdout] 37: 0x7d88033ba0da - std::panicking::catch_unwind::do_call::h61de12ce5e04e28f [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:589:40 [INFO] [stdout] 38: 0x7d88033ba0da - std::panicking::catch_unwind::h454dd49873d22e18 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panicking.rs:552:19 [INFO] [stdout] 39: 0x7d88033ba0da - std::panic::catch_unwind::h5c15187324f8cebb [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/panic.rs:359:14 [INFO] [stdout] 40: 0x7d88033ba0da - std::thread::Builder::spawn_unchecked_::{{closure}}::hbc9d9c7427673d42 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/thread/mod.rs:557:30 [INFO] [stdout] 41: 0x7d88033ba0da - core::ops::function::FnOnce::call_once{{vtable.shim}}::hefd458a129ddca13 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/core/src/ops/function.rs:250:5 [INFO] [stdout] 42: 0x7d88034860a7 - as core::ops::function::FnOnce>::call_once::h2d6e2e526b02c3da [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/alloc/src/boxed.rs:1966:9 [INFO] [stdout] 43: 0x7d88034860a7 - as core::ops::function::FnOnce>::call_once::h1aefced482b33c72 [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/alloc/src/boxed.rs:1966:9 [INFO] [stdout] 44: 0x7d88034860a7 - std::sys::pal::unix::thread::Thread::new::thread_start::h7c9c6951b48f721d [INFO] [stdout] at /rustc/8de4c7234dd9b97c9d76b58671343fdbbc9a433e/library/std/src/sys/pal/unix/thread.rs:97:17 [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] models::sequential::test_sequential_xor1 [INFO] [stdout] [INFO] [stdout] test result: FAILED. 6 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 1.86s [INFO] [stdout] [INFO] running `Command { std: "docker" "inspect" "086b1c87f0cf87897b988f0ede44e926caddf81db5897898cb64f5dd89a257d3", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "086b1c87f0cf87897b988f0ede44e926caddf81db5897898cb64f5dd89a257d3", kill_on_drop: false }` [INFO] [stdout] 086b1c87f0cf87897b988f0ede44e926caddf81db5897898cb64f5dd89a257d3