[INFO] fetching crate easynn 0.1.7-beta... [INFO] testing easynn-0.1.7-beta against 1.90.0 for beta-1.91-3 [INFO] extracting crate easynn 0.1.7-beta into /workspace/builds/worker-3-tc1/source [INFO] started tweaking crates.io crate easynn 0.1.7-beta [INFO] finished tweaking crates.io crate easynn 0.1.7-beta [INFO] tweaked toml for crates.io crate easynn 0.1.7-beta written to /workspace/builds/worker-3-tc1/source/Cargo.toml [INFO] validating manifest of crates.io crate easynn 0.1.7-beta on toolchain 1.90.0 [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+1.90.0" "metadata" "--manifest-path" "Cargo.toml" "--no-deps", kill_on_drop: false }` [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+1.90.0" "generate-lockfile" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] [stderr] Updating crates.io index [INFO] [stderr] Locking 28 packages to latest compatible versions [INFO] [stderr] Adding itertools v0.10.5 (available: v0.14.0) [INFO] [stderr] Adding rand v0.8.5 (available: v0.9.2) [INFO] running `Command { std: CARGO_HOME="/workspace/cargo-home" RUSTUP_HOME="/workspace/rustup-home" "/workspace/cargo-home/bin/cargo" "+1.90.0" "fetch" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:e90291280db7d1fac5b66fc6dad9f9662629e7365a55743daf9bdf73ebc4ea79" "/opt/rustwide/cargo-home/bin/cargo" "+1.90.0" "metadata" "--no-deps" "--format-version=1", kill_on_drop: false }` [INFO] [stdout] 9594173404e4d57337b012ea5eabe5bd2314b7f26244ee8ce678d3e4adaa29b2 [INFO] running `Command { std: "docker" "start" "-a" "9594173404e4d57337b012ea5eabe5bd2314b7f26244ee8ce678d3e4adaa29b2", kill_on_drop: false }` [INFO] running `Command { std: "docker" "inspect" "9594173404e4d57337b012ea5eabe5bd2314b7f26244ee8ce678d3e4adaa29b2", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "9594173404e4d57337b012ea5eabe5bd2314b7f26244ee8ce678d3e4adaa29b2", kill_on_drop: false }` [INFO] [stdout] 9594173404e4d57337b012ea5eabe5bd2314b7f26244ee8ce678d3e4adaa29b2 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=warn" "-e" "RUSTDOCFLAGS=--cap-lints=warn" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:e90291280db7d1fac5b66fc6dad9f9662629e7365a55743daf9bdf73ebc4ea79" "/opt/rustwide/cargo-home/bin/cargo" "+1.90.0" "build" "--frozen" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] 61da82e430b12345fed9daeaedbcf27696e7dcdb7d6073f45040931b070e3057 [INFO] running `Command { std: "docker" "start" "-a" "61da82e430b12345fed9daeaedbcf27696e7dcdb7d6073f45040931b070e3057", kill_on_drop: false }` [INFO] [stderr] Compiling rayon-core v1.13.0 [INFO] [stderr] Compiling either v1.15.0 [INFO] [stderr] Compiling crossbeam-queue v0.3.12 [INFO] [stderr] Compiling crossbeam-channel v0.5.15 [INFO] [stderr] Compiling getrandom v0.2.16 [INFO] [stderr] Compiling num_cpus v1.17.0 [INFO] [stderr] Compiling itertools v0.10.5 [INFO] [stderr] Compiling rand_core v0.6.4 [INFO] [stderr] Compiling rand_chacha v0.3.1 [INFO] [stderr] Compiling rand v0.8.5 [INFO] [stderr] Compiling crossbeam v0.8.4 [INFO] [stderr] Compiling rayon v1.11.0 [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `dev` profile [unoptimized + debuginfo] target(s) in 7.92s [INFO] running `Command { std: "docker" "inspect" "61da82e430b12345fed9daeaedbcf27696e7dcdb7d6073f45040931b070e3057", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "61da82e430b12345fed9daeaedbcf27696e7dcdb7d6073f45040931b070e3057", kill_on_drop: false }` [INFO] [stdout] 61da82e430b12345fed9daeaedbcf27696e7dcdb7d6073f45040931b070e3057 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=warn" "-e" "RUSTDOCFLAGS=--cap-lints=warn" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:e90291280db7d1fac5b66fc6dad9f9662629e7365a55743daf9bdf73ebc4ea79" "/opt/rustwide/cargo-home/bin/cargo" "+1.90.0" "test" "--frozen" "--no-run" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] dabf7d275714ce6b150344e4a55670f020114d5726bff14de3266c93c09abfef [INFO] running `Command { std: "docker" "start" "-a" "dabf7d275714ce6b150344e4a55670f020114d5726bff14de3266c93c09abfef", kill_on_drop: false }` [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stdout] --> src/models/sequential.rs:180:9 [INFO] [stdout] | [INFO] [stdout] 180 | use crate::layers::activation::Activation::*; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `rand::Rng` [INFO] [stdout] --> src/models/sequential.rs:207:9 [INFO] [stdout] | [INFO] [stdout] 207 | use rand::Rng; [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function `determine_thread` is never used [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: method `pos2index` is never used [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 26 | impl Tensor { [INFO] [stdout] | ----------------------- method in this implementation [INFO] [stdout] ... [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished `test` profile [unoptimized + debuginfo] target(s) in 1.14s [INFO] running `Command { std: "docker" "inspect" "dabf7d275714ce6b150344e4a55670f020114d5726bff14de3266c93c09abfef", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "dabf7d275714ce6b150344e4a55670f020114d5726bff14de3266c93c09abfef", kill_on_drop: false }` [INFO] [stdout] dabf7d275714ce6b150344e4a55670f020114d5726bff14de3266c93c09abfef [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-3-tc1/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=warn" "-e" "RUSTDOCFLAGS=--cap-lints=warn" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:e90291280db7d1fac5b66fc6dad9f9662629e7365a55743daf9bdf73ebc4ea79" "/opt/rustwide/cargo-home/bin/cargo" "+1.90.0" "test" "--frozen", kill_on_drop: false }` [INFO] [stdout] b80784c22f286425a995bf9f28257ee58bd3164cf4a02d0a1335fccbc7319ac0 [INFO] running `Command { std: "docker" "start" "-a" "b80784c22f286425a995bf9f28257ee58bd3164cf4a02d0a1335fccbc7319ac0", kill_on_drop: false }` [INFO] [stderr] warning: unused variable: `olen` [INFO] [stderr] --> src/layers/dense.rs:96:13 [INFO] [stderr] | [INFO] [stderr] 96 | let olen = output.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_variables)]` on by default [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:148:13 [INFO] [stderr] | [INFO] [stderr] 148 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:205:13 [INFO] [stderr] | [INFO] [stderr] 205 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:137:17 [INFO] [stderr] | [INFO] [stderr] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stdout] [INFO] [stderr] | [INFO] [stdout] running 7 tests [INFO] [stderr] = note: `#[warn(unused_mut)]` on by default [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:146:17 [INFO] [stderr] | [INFO] [stderr] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] [INFO] [stderr] warning: function `determine_thread` is never used [INFO] [stderr] --> src/layers/dense.rs:18:4 [INFO] [stderr] | [INFO] [stderr] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stderr] | ^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(dead_code)]` on by default [INFO] [stderr] [INFO] [stderr] warning: method `pos2index` is never used [INFO] [stderr] --> src/tensor/mod.rs:38:19 [INFO] [stderr] | [INFO] [stderr] 26 | impl Tensor { [INFO] [stderr] | ----------------------- method in this implementation [INFO] [stderr] ... [INFO] [stderr] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: `easynn` (lib) generated 7 warnings (run `cargo fix --lib -p easynn` to apply 2 suggestions) [INFO] [stderr] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stderr] --> src/models/sequential.rs:180:9 [INFO] [stderr] | [INFO] [stderr] 180 | use crate::layers::activation::Activation::*; [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_imports)]` on by default [INFO] [stderr] [INFO] [stderr] warning: unused import: `rand::Rng` [INFO] [stderr] --> src/models/sequential.rs:207:9 [INFO] [stderr] | [INFO] [stderr] 207 | use rand::Rng; [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: `easynn` (lib test) generated 9 warnings (7 duplicates) (run `cargo fix --lib -p easynn --tests` to apply 2 suggestions) [INFO] [stderr] Finished `test` profile [unoptimized + debuginfo] target(s) in 0.08s [INFO] [stderr] Running unittests src/lib.rs (/opt/rustwide/target/debug/deps/easynn-4fd8846423c49372) [INFO] [stdout] test layers::dense::test_dense_descend ... ok [INFO] [stdout] test layers::dense::test_dense_activate ... ok [INFO] [stdout] test layers::dense::test_add_weight_delta_to ... ok [INFO] [stdout] test models::sequential::test_sequential_predict ... ok [INFO] [stdout] test layers::dense::test_dense_forward ... ok [INFO] [stdout] test layers::dense::test_dense_backpropagate ... ok [INFO] [stdout] test models::sequential::test_sequential_xor1 ... FAILED [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] [INFO] [stdout] ---- models::sequential::test_sequential_xor1 stdout ---- [INFO] [stdout] [Epoch 0] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 1 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.9604060947450452 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0015679186577655657 [INFO] [stdout] [Epoch 1] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0015058290789180494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.925388371631248 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8887429921146504 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.005794706309055977 [INFO] [stdout] [Epoch 2] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.005565235939217361 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8591278550064917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8251063919482345 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0120589833120717 [INFO] [stdout] [Epoch 3] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.011581447572913661 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8001932392216446 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.7685055869484674 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.01984953724480553 [INFO] [stdout] [Epoch 4] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.019063495569911236 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7476901697588094 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.7180816390363606 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0287475284261473 [INFO] [stdout] [Epoch 5] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.02760912630047187 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7008423187262532 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6730889629046938 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.03841145609394797 [INFO] [stdout] [Epoch 6] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.03689036243262764 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6589749698783786 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6328795610711948 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.048564465100296564 [INFO] [stdout] [Epoch 7] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.04664131228232482 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6215009602804655 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5968895222533591 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.058983636308600325 [INFO] [stdout] [Epoch 8] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.05664788431077975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.587908634145403 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5646274522332451 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.06949095771119028 [INFO] [stdout] [Epoch 9] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.06673911578582714 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5577515152167475 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5356645552141641 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0799457190409194 [INFO] [stdout] [Epoch 10] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.076779868566899 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5306394473748578 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5096261252588136 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.09023811153484346 [INFO] [stdout] [Epoch 11] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.08666468231806365 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5062309900231059 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4861842428181909 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.10028384755109654 [INFO] [stdout] [Epoch 12] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.09631260718807311 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4842268862245604 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.46505150153006786 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11001964281627508 [INFO] [stdout] [Epoch 13] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1056628649607506 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4643644483190802 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4459756161656446 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11939942793401644 [INFO] [stdout] [Epoch 14] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.11467121058782938 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.44641272854829384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4287347844977814 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.12839117604875655 [INFO] [stdout] [Epoch 15] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.12330688547722578 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.430168361640317 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4131336945193605 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.13697425076999278 [INFO] [stdout] [Epoch 16] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1315500704395011 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.41545198285842033 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3990000843372269 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.14513719307939885 [INFO] [stdout] [Epoch 17] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.13938976023345465 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4021051391247279 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3861817756153887 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.15287587835500333 [INFO] [stdout] [Epoch 18] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1468219935721452 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.38998762285444205 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.37454411298940615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1601919851842909 [INFO] [stdout] [Epoch 19] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.15384838257099298 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.37897516838705936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.36396775171893175 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1670917265829132 [INFO] [stdout] [Epoch 20] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16047489421022987 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3689574596416028 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3543467442397953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1735848018269885 [INFO] [stdout] [Epoch 21] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16671084367463973 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.35983640507693476 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3455868834358882 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.17968353354816394 [INFO] [stdout] [Epoch 22] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.17256806561965665 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3515246423963563 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.33760426655746056 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1854021602046865 [INFO] [stdout] [Epoch 23] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.17806023466058093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3439442408601954 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3303240489221317 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.19075625867573187 [INFO] [stdout] [Epoch 24] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.18320231083217287 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3370255736991025 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.32367936098061817 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1957622756551869 [INFO] [stdout] [Epoch 25] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1880100895392415 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.33070633707191455 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3176103661238668 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2004371498512403 [INFO] [stdout] [Epoch 26] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1924998387171312 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.32493069538539887 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3120634398481371 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20479800981983082 [INFO] [stdout] [Epoch 27] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.19668800863096553 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3196485356742107 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3069904536615119 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20886193465001193 [INFO] [stdout] [Epoch 28] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20059100203787145 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3148148162006343 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.30234814947908917 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2126457667428558 [INFO] [stdout] [Epoch 29] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2042249943798387 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.31038899653699076 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.29809759227412597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2161659676380868 [INFO] [stdout] [Epoch 30] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20760579531961856 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.30633453819165896 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.29420369047926914 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21943850929131412 [INFO] [stdout] [Epoch 31] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2107487443233781 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3026184663773673 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2906347751088236 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22247879442955526 [INFO] [stdout] [Epoch 32] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2136686341701449 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2992109848360016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.287362229836496 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2253016006477044 [INFO] [stdout] [Epoch 33] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21637965726205532 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29608513676020853 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2843601653445043 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22792104378259023 [INFO] [stdout] [Epoch 34] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21889537044879967 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29321650581633374 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.28160513218600686 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23035055683881187 [INFO] [stdout] [Epoch 35] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2212286747879949 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29058295209935925 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2790758671962247 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23260288136247076 [INFO] [stdout] [Epoch 36] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2233918072605169 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2881643785586696 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2767530691677464 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23469006868291487 [INFO] [stdout] [Epoch 37] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22539634196307143 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28594252404086934 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2746192000888508 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2366234888836905 [INFO] [stdout] [Epoch 38] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22725319872389632 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28390077961715887 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2726583087443194 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23841384573479957 [INFO] [stdout] [Epoch 39] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22897265744370152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28202402531043924 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27085587390814586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24007119612989472 [INFO] [stdout] [Epoch 40] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2305643767631509 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28029848472202773 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2691986647270354 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2416049728333836 [INFO] [stdout] [Epoch 41] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2320374159091816 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.278711595388729 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2676746162113353 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24302400956133774 [INFO] [stdout] [Epoch 42] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23340025878270876 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2772518929857602 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26627271802352415 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24433656760319933 [INFO] [stdout] [Epoch 43] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23466083952611264 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27590890773632276 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2649829149899644 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24555036334415317 [INFO] [stdout] [Epoch 44] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23582656895572468 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27467307160008325 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2637960179647199 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24667259617540196 [INFO] [stdout] [Epoch 45] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23690436136685603 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2735356349953182 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2627036238495036 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2477099763854817 [INFO] [stdout] [Epoch 46] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23790066132061666 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2724885919671023 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2616980437252051 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24866875271356223 [INFO] [stdout] [Epoch 47] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23882147010610516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2715246128502152 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2607722381813467 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2495547393182819 [INFO] [stdout] [Epoch 48] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23967237164127791 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27063698359341587 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2599197590431166 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25037334197549427 [INFO] [stdout] [Epoch 49] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2404585576332647 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2698195510139655 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2591346967938125 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25112958336741326 [INFO] [stdout] [Epoch 50] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24118485186606367 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2690666733399707 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25841163307570797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2518281273657757 [INFO] [stdout] [Epoch 51] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24185573352209097 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.268373175475161 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25774559772634464 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25247330224425807 [INFO] [stdout] [Epoch 52] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24247535947538545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2677343084877234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2571320298716095 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25306912278173416 [INFO] [stdout] [Epoch 53] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24304758551957745 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26714571288316624 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2565667426529929 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2536193112390768 [INFO] [stdout] [Epoch 54] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2435759865140093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2666033852720799 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2560458912153055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2541273172089854 [INFO] [stdout] [Epoch 55] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2440638754475096 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26610364808810016 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25556594362381146 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25459633635148565 [INFO] [stdout] [Epoch 56] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2445143214319668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26564312205025287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25512365441706275 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25502932803793615 [INFO] [stdout] [Epoch 57] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24493016664763384 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2652187010978958 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2547160405344191 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25542903193410843 [INFO] [stdout] [Epoch 58] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24531404226951778 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26482752955634464 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2543403593859134 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25579798355861516 [INFO] [stdout] [Epoch 59] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.245668383409694 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26446698131749974 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25399408885732677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2561385288570239 [INFO] [stdout] [Epoch 60] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24599544311428567 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26413464084288335 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25367490906550516 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2564528378347143 [INFO] [stdout] [Epoch 61] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24629730545645961 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26382828581684153 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25338068569849453 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25674291729317217 [INFO] [stdout] [Epoch 62] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24657589776836256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2635458712956317 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25310945479232466 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25701062271517666 [INFO] [stdout] [Epoch 63] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24683300205565564 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26328551521399574 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25285940881152147 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.257257669344415 [INFO] [stdout] [Epoch 64] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24707026563837617 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2630454851248911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25262888391394556 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25748564250458805 [INFO] [stdout] [Epoch 65] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24728921106140636 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2628241860605279 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2524163482925309 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2576960072021768 [INFO] [stdout] [Epoch 66] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2474912453169706 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26262014941394896 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2522203914971565 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25789011705583537 [INFO] [stdout] [Epoch 67] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24767766842042427 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.262432022750263 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25203971464935265 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2580692225939225 [INFO] [stdout] [Epoch 68] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24784968137920316 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26225856046543194 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2518731214710009 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2582344789600702 [INFO] [stdout] [Epoch 69] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2480083935932514 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26209861521837086 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2517195100557234 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25838695306495646 [INFO] [stdout] [Epoch 70] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24815482972358416 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2619511300691452 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.251577865318407 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25852763022064673 [INFO] [stdout] [Epoch 71] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2482899360639091 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26181513126233613 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25144725206434754 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2586574202920373 [INFO] [stdout] [Epoch 72] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24841458644847264 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.261689721600289 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2513268086249176 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25877716339809187 [INFO] [stdout] [Epoch 73] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24852958772752742 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2615740743560272 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2512157410115286 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25888763519374147 [INFO] [stdout] [Epoch 74] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24863568484006934 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26146742768017345 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25111331754403865 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25898955176153077 [INFO] [stdout] [Epoch 75] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24873356551177409 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2613690794603243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2510188639136955 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2590835741403522 [INFO] [stdout] [Epoch 76] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24882386460439432 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26127838259503167 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25093175864426837 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2591703125169313 [INFO] [stdout] [Epoch 77] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2489071681412608 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.261194740647884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2508514289182278 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2592503301041036 [INFO] [stdout] [Epoch 78] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24898401703198106 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26111760385021 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2507773467377417 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2593241467283825 [INFO] [stdout] [Epoch 79] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24905491051793857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26104646542366244 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2507090253928855 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2593922421478373 [INFO] [stdout] [Epoch 80] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24912030935878296 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2609808581964213 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25064601621184296 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2594550591199024 [INFO] [stdout] [Epoch 81] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2491806387787543 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2609203514890091 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2505879055700443 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25951300623741047 [INFO] [stdout] [Epoch 82] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24923629119040905 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2608645482477554 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2505343121371442 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2595664605498909 [INFO] [stdout] [Epoch 83] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24928762871211524 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26081308240580353 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2504848843425337 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25961576998599256 [INFO] [stdout] [Epoch 84] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24933498549454727 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26076561645325164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2504392980417028 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2596612555917809 [INFO] [stdout] [Epoch 85] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24937866987034635 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2607218391995512 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.250397254367249 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2597032135986157 [INFO] [stdout] [Epoch 86] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24941896634011054 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2606814637127031 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25035847774968006 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25974191733334234 [INFO] [stdout] [Epoch 87] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24945613740694197 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2606442254210584 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25032271409438456 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25977761898261065 [INFO] [stdout] [Epoch 88] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24949042527089926 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26060988036471594 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502897291022732 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25981055122228675 [INFO] [stdout] [Epoch 89] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24952205339388417 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2605782035845644 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502593067226157 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25984092872212317 [INFO] [stdout] [Epoch 90] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24955122794472712 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26054898763800344 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2502312477275384 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.259868949535108 [INFO] [stdout] [Epoch 91] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24957813913351773 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2605220412312666 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25020536839850843 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2598947963802258 [INFO] [stdout] [Epoch 92] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24960296244356886 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604971879590891 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501814993159091 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599186378267136 [INFO] [stdout] [Epoch 93] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2496258597687758 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604742651432128 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501594842435417 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599406293872995 [INFO] [stdout] [Epoch 94] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2496469804635624 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604531227619074 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501391791005359 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25996091452735076 [INFO] [stdout] [Epoch 95] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24966646231206768 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26043362246331386 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501204510137666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25997962559634613 [INFO] [stdout] [Epoch 96] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2496844324227308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26041563665599793 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25010317744442034 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599968846875995 [INFO] [stdout] [Epoch 97] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497010080539706 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26039904767062627 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500872453828695 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600128044317245 [INFO] [stdout] [Epoch 98] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24971629737622816 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603837469871671 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500725506064753 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260027488728908 [INFO] [stdout] [Epoch 99] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24973040017524323 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603696345224619 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25005899699537243 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26004103342468604 [INFO] [stdout] [Epoch 100] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497434085010685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26035661797342485 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25004649590167716 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600535269335525 [INFO] [stdout] [Epoch 101] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497554072669838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26034461221150496 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25003496556792937 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600650508144085 [INFO] [stdout] [Epoch 102] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24976647480215794 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603335387243889 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500243305909031 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260075680301553 [INFO] [stdout] [Epoch 103] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24977668336161146 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26032332510124323 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25001452142723396 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600854847946337 [INFO] [stdout] [Epoch 104] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24978609959676623 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603139045580865 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25000547393758615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600945283107176 [INFO] [stdout] [Epoch 105] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24979478498961322 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603052155001506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24999712896634466 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601028699013979 [INFO] [stdout] [Epoch 106] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24980279625330257 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602972011183392 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24998943195405296 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26011056403763316 [INFO] [stdout] [Epoch 107] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498101857017429 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26028980901711596 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499823325800382 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601176609648054 [INFO] [stdout] [Epoch 108] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498170015905991 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602829908713702 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24997578443286392 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601242070302965 [INFO] [stdout] [Epoch 109] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24982328843189677 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26027670210999426 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499697447064384 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26013024498570303 [INFO] [stdout] [Epoch 110] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24982908728426917 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602709016240903 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24996417391977632 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601358142656476 [INFO] [stdout] [Epoch 111] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498344360207279 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26026555149788333 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499590356585671 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26014095124499725 [INFO] [stdout] [Epoch 112] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24983936957569533 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602606167605695 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499542963368509 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26014568947615474 [INFO] [stdout] [Epoch 113] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24984392017289905 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26025606515746913 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499499249772334 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601500599079652 [INFO] [stdout] [Epoch 114] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498481175356098 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602518669389787 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994589300819517 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601540910876596 [INFO] [stdout] [Epoch 115] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985198908058825 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602479946659345 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994217407716346 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601578093471468 [INFO] [stdout] [Epoch 116] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985556009699975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602444230301117 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993874387811935 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016123897486554 [INFO] [stdout] [Epoch 117] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985885391146087 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26024112868867827 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993557999260665 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016440237431576 [INFO] [stdout] [Epoch 118] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986189204029288 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602380901115178 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993266174310166 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601673202102968 [INFO] [stdout] [Epoch 119] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986469432996908 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602352874404203 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499299700577796 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260170011543808 [INFO] [stdout] [Epoch 120] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498672790866732 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26023270235921697 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992748734579198 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017249395648784 [INFO] [stdout] [Epoch 121] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498696631958109 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26023031797400736 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992519738223673 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017478366540314 [INFO] [stdout] [Epoch 122] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987186223225316 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022811870269336 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499230852020666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601768956289351 [INFO] [stdout] [Epoch 123] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987389056202924 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022609017309706 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499211370022424 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601788436444515 [INFO] [stdout] [Epoch 124] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987576143613122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022421912899546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991934005148725 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018064043840444 [INFO] [stdout] [Epoch 125] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498774870770436 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602224933434536 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991768260705285 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018229774943724 [INFO] [stdout] [Epoch 126] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987907875855955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602209015388924 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991615383795218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601838264050448 [INFO] [stdout] [Epoch 127] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988054687940503 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602194333133644 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499147437541552 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018523639228597 [INFO] [stdout] [Epoch 128] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988190103115146 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021807907255795 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991344314128475 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018653692301036 [INFO] [stdout] [Epoch 129] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988315006085915 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021682996708134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991224350038502 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018773649402327 [INFO] [stdout] [Epoch 130] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988430212885995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602156778346193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499111369923683 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018884294258293 [INFO] [stdout] [Epoch 131] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498853647620566 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021461514658123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991011638677665 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018986349759066 [INFO] [stdout] [Epoch 132] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988634490308606 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602136349588948 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990917501452256 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019080482680973 [INFO] [stdout] [Epoch 133] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498872489556681 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602127308666186 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990830672430053 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601916730804192 [INFO] [stdout] [Epoch 134] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498880828264346 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260211896962082 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499075058423835 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019247393118766 [INFO] [stdout] [Epoch 135] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988885196351263 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602111277962735 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990676713554108 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019321261153006 [INFO] [stdout] [Epoch 136] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498895613921135 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021041834322983 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990608577683787 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019389394768794 [INFO] [stdout] [Epoch 137] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498902157473595 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602097639671887 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499054573140881 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019452239125707 [INFO] [stdout] [Epoch 138] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989081930456328 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602091603922933 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990487764075844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019510204826846 [INFO] [stdout] [Epoch 139] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989137600715705 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602086036746481 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990434296913208 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601956367060119 [INFO] [stdout] [Epoch 140] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498918894924539 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020809017654617 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499038498055549 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019612985777807 [INFO] [stdout] [Epoch 141] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989236311541002 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020761654269575 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249903394927605 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601965847256794 [INFO] [stdout] [Epoch 142] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989279997054253 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020717967829493 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990297536303435 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019700428170134 [INFO] [stdout] [Epoch 143] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989320291214598 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602067767288063 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499025883703456 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019739126711694 [INFO] [stdout] [Epoch 144] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989357457293912 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020640506130477 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249902231420877 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019774821039793 [INFO] [stdout] [Epoch 145] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989391738126612 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602060622472704 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499019021822785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019807744373225 [INFO] [stdout] [Epoch 146] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989423357696045 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020574604672064 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499015985032704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601983811182617 [INFO] [stdout] [Epoch 147] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989452522597855 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602054543935716 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990131839958613 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019866121813584 [INFO] [stdout] [Epoch 148] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989479423389765 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260205185382138 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990106004100537 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019891957347496 [INFO] [stdout] [Epoch 149] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989504235836532 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020493725468047 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499008217393951 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019915787232745 [INFO] [stdout] [Epoch 150] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989527122058325 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602047083899188 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990060193767794 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601993776716984 [INFO] [stdout] [Epoch 151] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498954823158991 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602044972924389 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499003991996582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019958040772195 [INFO] [stdout] [Epoch 152] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498956770235762 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020430258292054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990021220063696 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019976740504497 [INFO] [stdout] [Epoch 153] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989585661580518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020412298912515 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990003971875577 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019993988548135 [INFO] [stdout] [Epoch 154] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498960222660163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602039573375814 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989988062701327 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602000989759947 [INFO] [stdout] [Epoch 155] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989617505654532 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020380454591874 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989973388590025 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020024571606193 [INFO] [stdout] [Epoch 156] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989631598570589 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602036636157936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989959853660818 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020038106446436 [INFO] [stdout] [Epoch 157] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989644597431157 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020353362636733 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989947369476315 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602005059055526 [INFO] [stdout] [Epoch 158] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989656587169268 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602034137282881 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989935854464781 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020062105502395 [INFO] [stdout] [Epoch 159] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989667646124503 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602033031381418 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989925233387136 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020072726525256 [INFO] [stdout] [Epoch 160] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989677846554853 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602032011333329 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989915436845297 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602008252302048 [INFO] [stdout] [Epoch 161] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989687255108872 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602031070473629 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498990640082872 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020091558997405 [INFO] [stdout] [Epoch 162] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498969593326111 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602030202654747 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989898066296196 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260200998934962 [INFO] [stdout] [Epoch 163] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989703937713748 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020294022063717 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989890378789986 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020107580973706 [INFO] [stdout] [Epoch 164] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498971132076715 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602028663898385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989883288080086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201146716592 [INFO] [stdout] [Epoch 165] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989718130661495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020279829066983 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989876747835932 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020121211882574 [INFO] [stdout] [Epoch 166] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989724411892025 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020273547817285 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989870715323717 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602012724437711 [INFO] [stdout] [Epoch 167] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989730205499777 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020267754193227 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989865151127183 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602013280855861 [INFO] [stdout] [Epoch 168] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989735549339692 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602026241033945 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989860018890006 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020137940782995 [INFO] [stdout] [Epoch 169] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989740478327985 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602025748133936 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498985528507832 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201426745838 [INFO] [stdout] [Epoch 170] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989745024670285 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020252934987026 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989850918761536 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602014704089132 [INFO] [stdout] [Epoch 171] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989749218072024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602024874157675 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989846891410306 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015106823468 [INFO] [stdout] [Epoch 172] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498975308593259 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602024487370891 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989843176710033 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020154782928245 [INFO] [stdout] [Epoch 173] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989756653524287 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020241306111036 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989839750389037 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015820924355 [INFO] [stdout] [Epoch 174] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989759944157505 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602023801547255 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989836590059844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020161369567885 [INFO] [stdout] [Epoch 175] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989762979332997 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020234980292584 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989833675073 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020164284550606 [INFO] [stdout] [Epoch 176] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989765778882403 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602023218073938 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249898309863821 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020166973237996 [INFO] [stdout] [Epoch 177] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989768361097775 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020229598520767 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989828506419348 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016945319776 [INFO] [stdout] [Epoch 178] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498977074285113 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022721676466 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989826218980776 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020171740633785 [INFO] [stdout] [Epoch 179] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989772939704685 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022501990876 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498982410912037 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020173850492034 [INFO] [stdout] [Epoch 180] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989774966012548 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020222993598896 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989822163052386 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017579655818 [INFO] [stdout] [Epoch 181] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989776835014474 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022112459528 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989820368061305 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020177591547694 [INFO] [stdout] [Epoch 182] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498977855892241 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020219400685907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989818712418738 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020179247188935 [INFO] [stdout] [Epoch 183] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989780149000254 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021781060683 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989817185306804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018077429973 [INFO] [stdout] [Epoch 184] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978161563746 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021634396857 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989815776747412 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018218285816 [INFO] [stdout] [Epoch 185] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989782968416976 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021499118817 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989814477537123 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020183482067627 [INFO] [stdout] [Epoch 186] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989784216177752 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021374342664 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989813279186948 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020184680417113 [INFO] [stdout] [Epoch 187] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989785367072595 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020212592531156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981217386692 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018578573654 [INFO] [stdout] [Epoch 188] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978642862137 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020211530981835 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989811154354952 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020186805248 [INFO] [stdout] [Epoch 189] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978740776018 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020210551842565 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981021398959 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020187745612944 [INFO] [stdout] [Epoch 190] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989788310886676 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020209648715675 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989809346626532 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020188612975637 [INFO] [stdout] [Epoch 191] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989789143901806 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020208815700197 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989808546598477 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020189413003375 [INFO] [stdout] [Epoch 192] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989789912248442 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020804735328 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807808678088 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201901509235 [INFO] [stdout] [Epoch 193] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979062094693 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020733865454 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807128043828 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019083155753 [INFO] [stdout] [Epoch 194] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989791274627848 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020206684973424 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989806500248474 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201914593527 [INFO] [stdout] [Epoch 195] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979187756233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020608203876 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989805921190025 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019203841098 [INFO] [stdout] [Epoch 196] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792433689903 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020552591104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980538708496 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019257251591 [INFO] [stdout] [Epoch 197] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792946644282 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020501295653 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980489444345 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020193065157304 [INFO] [stdout] [Epoch 198] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989793419777073 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020453982363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804440046617 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019351955404 [INFO] [stdout] [Epoch 199] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897938561797 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020410342091 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980402092544 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019393867513 [INFO] [stdout] [Epoch 200] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989794258703596 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020203700896927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989803634341418 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019432525908 [INFO] [stdout] [Epoch 201] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989794629978818 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020203329621644 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989803277768632 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020194681831804 [INFO] [stdout] [Epoch 202] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989794972431267 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202987169144 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802948877243 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019501072314 [INFO] [stdout] [Epoch 203] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795288298505 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202671301856 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802645518297 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195314082034 [INFO] [stdout] [Epoch 204] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795579644386 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202379955926 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802365709674 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195593890627 [INFO] [stdout] [Epoch 205] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795848372556 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020211122772 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802107623107 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019585197716 [INFO] [stdout] [Epoch 206] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796096238864 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201863361386 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801869572278 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019609002796 [INFO] [stdout] [Epoch 207] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796324862854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201634737367 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801650001772 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196309598437 [INFO] [stdout] [Epoch 208] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979653573834 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201423861866 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980144747693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019651212326 [INFO] [stdout] [Epoch 209] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796730243177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020122935701 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801260674468 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196698925707 [INFO] [stdout] [Epoch 210] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796909648246 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020104995193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801088373834 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019687122633 [INFO] [stdout] [Epoch 211] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797075125766 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020088447439 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800929449205 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197030150943 [INFO] [stdout] [Epoch 212] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797227756966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200731843185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800782862195 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197176737947 [INFO] [stdout] [Epoch 213] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797368539127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020059106101 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800647654994 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019731194513 [INFO] [stdout] [Epoch 214] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797498392108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020046120802 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800522944186 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197436655945 [INFO] [stdout] [Epoch 215] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797618164367 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020034143575 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800407914903 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197551685215 [INFO] [stdout] [Epoch 216] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797728638485 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200230961626 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980030181555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197657784555 [INFO] [stdout] [Epoch 217] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797830536287 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020012906383 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800203952897 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019775564722 [INFO] [stdout] [Epoch 218] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797924523585 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020003507653 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980011368749 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019784591261 [INFO] [stdout] [Epoch 219] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798011214476 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019994838562 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800030429551 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019792917055 [INFO] [stdout] [Epoch 220] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798091175397 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019986842471 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799953635086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019800596501 [INFO] [stdout] [Epoch 221] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798164928798 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199794671295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979988280231 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198076797785 [INFO] [stdout] [Epoch 222] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979823295659 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199726643495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799817468417 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019814213168 [INFO] [stdout] [Epoch 223] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798295703264 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019966389682 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799757206516 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019820239358 [INFO] [stdout] [Epoch 224] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979835357879 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201996060213 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799701622853 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019825797724 [INFO] [stdout] [Epoch 225] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798406961342 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199552638745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799650354258 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019830924583 [INFO] [stdout] [Epoch 226] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979845619969 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201995034004 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979960306574 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019835653435 [INFO] [stdout] [Epoch 227] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798501615587 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199457984494 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799559448317 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019840015176 [INFO] [stdout] [Epoch 228] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798543505756 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199416094336 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799519216993 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198440383085 [INFO] [stdout] [Epoch 229] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798582143918 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019937745617 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799482108901 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198477491185 [INFO] [stdout] [Epoch 230] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798617782535 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019934181755 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979944788157 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019851171852 [INFO] [stdout] [Epoch 231] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798650654466 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199308945624 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799416311373 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019854328871 [INFO] [stdout] [Epoch 232] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798680974473 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199278625605 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799387192035 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198572408054 [INFO] [stdout] [Epoch 233] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798708940691 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019925065939 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979936033328 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019859926681 [INFO] [stdout] [Epoch 234] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798734735838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199224864254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799335559626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019862404046 [INFO] [stdout] [Epoch 235] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798758528453 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199201071637 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799312709193 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019864689089 [INFO] [stdout] [Epoch 236] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979878047401 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199179126074 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979929163268 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201986679674 [INFO] [stdout] [Epoch 237] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979880071589 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019915888419 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799272192378 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019868740771 [INFO] [stdout] [Epoch 238] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798819386363 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199140213723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979925426126 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019870533882 [INFO] [stdout] [Epoch 239] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798836607405 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019912299268 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799237722168 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198721877913 [INFO] [stdout] [Epoch 240] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979885249155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199107108527 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799222467032 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019873713305 [INFO] [stdout] [Epoch 241] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979886714258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201990924575 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799208396185 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201987512039 [INFO] [stdout] [Epoch 242] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798880656222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019907894386 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799195417683 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198764182395 [INFO] [stdout] [Epoch 243] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979889312077 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199066479305 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799183446726 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019877615336 [INFO] [stdout] [Epoch 244] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798904617683 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019905498239 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799172405092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198787194987 [INFO] [stdout] [Epoch 245] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798915222067 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019904437802 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799162220652 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198797379435 [INFO] [stdout] [Epoch 246] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798925003207 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199034596875 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799152826841 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019880677324 [INFO] [stdout] [Epoch 247] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798934025026 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019902557505 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799144162286 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198815437795 [INFO] [stdout] [Epoch 248] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798942346458 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019901725362 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799136170376 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201988234297 [INFO] [stdout] [Epoch 249] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798950021888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019900957819 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897991287989 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019883080118 [INFO] [stdout] [Epoch 250] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798957101453 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019900249863 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799121999684 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198837600395 [INFO] [stdout] [Epoch 251] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798963631418 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019899596866 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799115728303 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019884387177 [INFO] [stdout] [Epoch 252] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798969654453 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198989945637 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979910994378 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198849656306 [INFO] [stdout] [Epoch 253] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798975209912 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019898439017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799104608315 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019885499176 [INFO] [stdout] [Epoch 254] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979898033409 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198979265996 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799099687057 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198859913024 [INFO] [stdout] [Epoch 255] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798985060466 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019897453961 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979909514785 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198864452226 [INFO] [stdout] [Epoch 256] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798989419923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198970180153 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979909096103 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198868639055 [INFO] [stdout] [Epoch 257] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979899344095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198966159136 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979908709923 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019887250085 [INFO] [stdout] [Epoch 258] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798997149815 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198962450275 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979908353724 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019887606284 [INFO] [stdout] [Epoch 259] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799000570748 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198959029334 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799080251773 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198879348316 [INFO] [stdout] [Epoch 260] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799003726124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019895587395 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979907722135 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019888237873 [INFO] [stdout] [Epoch 261] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799006636534 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019895296354 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979907442619 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019888517389 [INFO] [stdout] [Epoch 262] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799009321004 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019895027907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799071848023 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019888775206 [INFO] [stdout] [Epoch 263] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979901179708 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894780301 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906947 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889013008 [INFO] [stdout] [Epoch 264] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979901408093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894551916 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906727659 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198892323493 [INFO] [stdout] [Epoch 265] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979901618748 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989434126 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799065253457 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889434662 [INFO] [stdout] [Epoch 266] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799018130493 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198941469597 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799063387397 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889621268 [INFO] [stdout] [Epoch 267] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979901992266 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198939677425 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906166619 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198897933894 [INFO] [stdout] [Epoch 268] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902157571 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893802437 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799060078607 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889952147 [INFO] [stdout] [Epoch 269] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799023100417 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198936499667 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905861428 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989009858 [INFO] [stdout] [Epoch 270] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799024506767 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198935093325 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799057263623 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198902336455 [INFO] [stdout] [Epoch 271] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902580393 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198933796146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905601782 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198903582265 [INFO] [stdout] [Epoch 272] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799027000406 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893259968 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799054868728 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890473135 [INFO] [stdout] [Epoch 273] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799028103987 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198931496097 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799053808848 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198905791225 [INFO] [stdout] [Epoch 274] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799029121892 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198930478183 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799052831252 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198906768827 [INFO] [stdout] [Epoch 275] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030060783 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198929539295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799051929545 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198907670533 [INFO] [stdout] [Epoch 276] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030926776 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198928673305 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799051097847 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198908502234 [INFO] [stdout] [Epoch 277] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799031725546 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892787454 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799050330708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198909269376 [INFO] [stdout] [Epoch 278] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799032462312 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892713777 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799049623118 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198909976966 [INFO] [stdout] [Epoch 279] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903314188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198926458205 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904897045 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891062963 [INFO] [stdout] [Epoch 280] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990337687 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892583138 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799048368455 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891123163 [INFO] [stdout] [Epoch 281] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799034346852 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892525323 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799047813202 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198911786885 [INFO] [stdout] [Epoch 282] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799034880122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892471995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904730105 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198912299036 [INFO] [stdout] [Epoch 283] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799035371996 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892422809 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799046828656 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891277143 [INFO] [stdout] [Epoch 284] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799035825677 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198923774407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799046392938 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891320714 [INFO] [stdout] [Epoch 285] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036244137 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198923355947 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045991054 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891360902 [INFO] [stdout] [Epoch 286] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036630103 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892296997 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904562036 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891397972 [INFO] [stdout] [Epoch 287] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036986118 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198922613963 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045278446 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891432163 [INFO] [stdout] [Epoch 288] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037314495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892228559 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044963076 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914637005 [INFO] [stdout] [Epoch 289] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903761738 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989219827 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904467219 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914927894 [INFO] [stdout] [Epoch 290] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037896748 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198921703336 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044403882 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891519621 [INFO] [stdout] [Epoch 291] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038154434 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892144564 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044156408 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915443676 [INFO] [stdout] [Epoch 292] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038392108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892120797 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043928138 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891567194 [INFO] [stdout] [Epoch 293] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038611332 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892098876 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043717592 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915882486 [INFO] [stdout] [Epoch 294] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038813545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892078653 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043523386 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891607669 [INFO] [stdout] [Epoch 295] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039000057 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892060003 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043344268 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891625581 [INFO] [stdout] [Epoch 296] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039172078 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920428006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043179056 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891642103 [INFO] [stdout] [Epoch 297] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903933076 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892026932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043026664 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916573417 [INFO] [stdout] [Epoch 298] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039477112 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892012297 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042886104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916713977 [INFO] [stdout] [Epoch 299] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039612104 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891998797 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042756447 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916843634 [INFO] [stdout] [Epoch 300] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039736624 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891986346 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042636868 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916963216 [INFO] [stdout] [Epoch 301] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039851474 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919748605 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042526567 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917073517 [INFO] [stdout] [Epoch 302] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039957403 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919642684 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042424835 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891717525 [INFO] [stdout] [Epoch 303] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040055108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891954497 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042330996 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891726909 [INFO] [stdout] [Epoch 304] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040145236 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919454857 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042244437 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917355647 [INFO] [stdout] [Epoch 305] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040228364 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891937172 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042164595 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891743549 [INFO] [stdout] [Epoch 306] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904030504 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891929504 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904209096 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891750912 [INFO] [stdout] [Epoch 307] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904037576 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919224313 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904202304 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891757705 [INFO] [stdout] [Epoch 308] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040440994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891915909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904196039 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891763969 [INFO] [stdout] [Epoch 309] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040501162 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891909892 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041902605 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891769748 [INFO] [stdout] [Epoch 310] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040556662 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891904342 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041849303 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891775078 [INFO] [stdout] [Epoch 311] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040607855 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891899223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904180014 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891779994 [INFO] [stdout] [Epoch 312] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904065506 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918945026 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041754795 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891784528 [INFO] [stdout] [Epoch 313] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040698607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918901477 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041712973 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891788711 [INFO] [stdout] [Epoch 314] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040738778 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989188613 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041674388 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917925697 [INFO] [stdout] [Epoch 315] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904077584 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891882424 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041638802 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917961274 [INFO] [stdout] [Epoch 316] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040810007 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891879008 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904160599 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917994086 [INFO] [stdout] [Epoch 317] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904084152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891875857 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041575722 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891802436 [INFO] [stdout] [Epoch 318] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040870594 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891872948 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041547806 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918052273 [INFO] [stdout] [Epoch 319] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040897404 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918702686 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041522054 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891807803 [INFO] [stdout] [Epoch 320] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904092214 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918677945 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041498298 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891810178 [INFO] [stdout] [Epoch 321] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904094495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918655135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041476388 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989181237 [INFO] [stdout] [Epoch 322] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891863408 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041456173 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918143905 [INFO] [stdout] [Epoch 323] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040985403 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891861468 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041437538 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918162546 [INFO] [stdout] [Epoch 324] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041003308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891859678 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041420344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891817974 [INFO] [stdout] [Epoch 325] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041019825 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918580256 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904140448 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989181956 [INFO] [stdout] [Epoch 326] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041035052 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918565024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904138985 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891821023 [INFO] [stdout] [Epoch 327] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041049104 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891855098 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041376354 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891822373 [INFO] [stdout] [Epoch 328] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904106207 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891853802 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904136391 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891823617 [INFO] [stdout] [Epoch 329] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041074015 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891852607 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041352434 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918247645 [INFO] [stdout] [Epoch 330] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041085037 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891851505 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041341845 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891825823 [INFO] [stdout] [Epoch 331] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904109521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891850488 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041332078 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918268006 [INFO] [stdout] [Epoch 332] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041104593 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891849549 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041323063 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891827702 [INFO] [stdout] [Epoch 333] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041113253 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918486825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904131475 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918285337 [INFO] [stdout] [Epoch 334] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041121238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891847885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904130708 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918293 [INFO] [stdout] [Epoch 335] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041128605 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918471477 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904130001 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918300075 [INFO] [stdout] [Epoch 336] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904113539 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918464693 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041293492 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918306586 [INFO] [stdout] [Epoch 337] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041141647 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891845844 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041287478 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183126 [INFO] [stdout] [Epoch 338] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041147423 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918452664 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041281927 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891831815 [INFO] [stdout] [Epoch 339] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041152752 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891844733 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904127681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891832327 [INFO] [stdout] [Epoch 340] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041157668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891844241 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041272093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891832799 [INFO] [stdout] [Epoch 341] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041162203 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843787 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904126774 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918332343 [INFO] [stdout] [Epoch 342] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041166383 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041263724 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891833636 [INFO] [stdout] [Epoch 343] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041170244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918429827 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041260016 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918340065 [INFO] [stdout] [Epoch 344] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041173802 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918426274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041256597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918343485 [INFO] [stdout] [Epoch 345] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041177083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918423 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041253444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891834664 [INFO] [stdout] [Epoch 346] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041180108 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918419973 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904125055 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918349535 [INFO] [stdout] [Epoch 347] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041182895 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417187 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041247873 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835221 [INFO] [stdout] [Epoch 348] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041185462 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918414617 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041245397 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918354687 [INFO] [stdout] [Epoch 349] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041187843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904124311 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835697 [INFO] [stdout] [Epoch 350] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119003 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918410054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041241012 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835907 [INFO] [stdout] [Epoch 351] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840804 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123907 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836101 [INFO] [stdout] [Epoch 352] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041193916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840617 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041237284 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918362797 [INFO] [stdout] [Epoch 353] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041195632 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840446 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123564 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836444 [INFO] [stdout] [Epoch 354] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041197205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123412 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836596 [INFO] [stdout] [Epoch 355] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041198665 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840142 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041232721 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918367365 [INFO] [stdout] [Epoch 356] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041200014 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041231422 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918368653 [INFO] [stdout] [Epoch 357] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041201258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041230235 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918369847 [INFO] [stdout] [Epoch 358] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041202396 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918397686 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041229135 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837094 [INFO] [stdout] [Epoch 359] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041203456 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839662 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041228114 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837196 [INFO] [stdout] [Epoch 360] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041204433 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839565 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041227181 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183729 [INFO] [stdout] [Epoch 361] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041205338 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041226315 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837376 [INFO] [stdout] [Epoch 362] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206165 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839392 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041225516 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918374565 [INFO] [stdout] [Epoch 363] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206937 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224783 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837529 [INFO] [stdout] [Epoch 364] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120763 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224106 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837597 [INFO] [stdout] [Epoch 365] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208285 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223476 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837661 [INFO] [stdout] [Epoch 366] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208896 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412229 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918377185 [INFO] [stdout] [Epoch 367] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209446 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839064 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222366 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837772 [INFO] [stdout] [Epoch 368] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041209962 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839012 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221866 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837821 [INFO] [stdout] [Epoch 369] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121044 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122141 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837867 [INFO] [stdout] [Epoch 370] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121087 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918389215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918379084 [INFO] [stdout] [Epoch 371] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041211275 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918388804 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220612 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837947 [INFO] [stdout] [Epoch 372] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121164 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918388443 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220256 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837982 [INFO] [stdout] [Epoch 373] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121198 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918388104 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219934 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838015 [INFO] [stdout] [Epoch 374] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212296 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838778 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219635 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380444 [INFO] [stdout] [Epoch 375] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121258 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183875 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219357 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380727 [INFO] [stdout] [Epoch 376] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121285 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918387233 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219102 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380977 [INFO] [stdout] [Epoch 377] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121309 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918386994 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121887 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918381215 [INFO] [stdout] [Epoch 378] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213318 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918386767 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218647 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838143 [INFO] [stdout] [Epoch 379] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213523 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218447 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838164 [INFO] [stdout] [Epoch 380] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213723 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918386356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218258 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918381826 [INFO] [stdout] [Epoch 381] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213906 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838618 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382 [INFO] [stdout] [Epoch 382] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214067 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918386017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217925 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382154 [INFO] [stdout] [Epoch 383] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838586 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121778 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382303 [INFO] [stdout] [Epoch 384] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121436 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217647 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382437 [INFO] [stdout] [Epoch 385] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838559 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217514 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382564 [INFO] [stdout] [Epoch 386] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121461 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217403 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382675 [INFO] [stdout] [Epoch 387] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214722 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838536 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217303 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838278 [INFO] [stdout] [Epoch 388] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217203 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838288 [INFO] [stdout] [Epoch 389] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217114 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838297 [INFO] [stdout] [Epoch 390] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838508 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383053 [INFO] [stdout] [Epoch 391] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216948 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838313 [INFO] [stdout] [Epoch 392] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838493 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383197 [INFO] [stdout] [Epoch 393] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838486 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383264 [INFO] [stdout] [Epoch 394] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215288 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121676 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383325 [INFO] [stdout] [Epoch 395] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215344 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838338 [INFO] [stdout] [Epoch 396] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412154 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838468 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383436 [INFO] [stdout] [Epoch 397] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121545 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838348 [INFO] [stdout] [Epoch 398] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838459 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121656 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383525 [INFO] [stdout] [Epoch 399] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215538 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216515 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838357 [INFO] [stdout] [Epoch 400] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215582 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183845 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121647 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838361 [INFO] [stdout] [Epoch 401] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215616 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838447 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216437 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838364 [INFO] [stdout] [Epoch 402] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121565 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384435 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216404 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383675 [INFO] [stdout] [Epoch 403] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215682 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384396 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838371 [INFO] [stdout] [Epoch 404] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121571 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216348 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838373 [INFO] [stdout] [Epoch 405] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215732 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838434 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216326 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838375 [INFO] [stdout] [Epoch 406] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215754 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838432 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216304 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383775 [INFO] [stdout] [Epoch 407] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215777 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216282 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383797 [INFO] [stdout] [Epoch 408] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412158 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384285 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121627 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838381 [INFO] [stdout] [Epoch 409] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121581 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838382 [INFO] [stdout] [Epoch 410] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121582 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384263 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216249 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838383 [INFO] [stdout] [Epoch 411] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215832 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838425 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216237 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838384 [INFO] [stdout] [Epoch 412] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838424 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838385 [INFO] [stdout] [Epoch 413] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838423 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838387 [INFO] [stdout] [Epoch 414] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215865 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838422 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216204 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838388 [INFO] [stdout] [Epoch 415] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215877 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838421 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216193 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838389 [INFO] [stdout] [Epoch 416] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183839 [INFO] [stdout] [Epoch 417] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412159 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121617 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383913 [INFO] [stdout] [Epoch 418] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121591 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121616 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383924 [INFO] [stdout] [Epoch 419] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121592 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384163 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216149 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383936 [INFO] [stdout] [Epoch 420] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215932 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891838415 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216137 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383947 [INFO] [stdout] [Epoch 421] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216126 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838396 [INFO] [stdout] [Epoch 422] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215954 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384124 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216115 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838397 [INFO] [stdout] [Epoch 423] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215965 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 424] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 425] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 426] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 427] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 428] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 429] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 430] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 431] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 432] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 433] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 434] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 435] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 436] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 437] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 438] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 439] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 440] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 441] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 442] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 443] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 444] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 445] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 446] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 447] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 448] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 449] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 450] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 451] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 452] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 453] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 454] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 455] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 456] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 457] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 458] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 459] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 460] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 461] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 462] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 463] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 464] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 465] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 466] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 467] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 468] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 469] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 470] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 471] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 472] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 473] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 474] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 475] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 476] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 477] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 478] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 479] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 480] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 481] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 482] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 483] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 484] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 485] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 486] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 487] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 488] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 489] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 490] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 491] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 492] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 493] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 494] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 495] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 496] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 497] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 498] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 499] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 500] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 501] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 502] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 503] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 504] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 505] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 506] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 507] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 508] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 509] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 510] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 511] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 512] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 513] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 514] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 515] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 516] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 517] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 518] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 519] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 520] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 521] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 522] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 523] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 524] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 525] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 526] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 527] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 528] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 529] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 530] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 531] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 532] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 533] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 534] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 535] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 536] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 537] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 538] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 539] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 540] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 541] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 542] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 543] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 544] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 545] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 546] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 547] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 548] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 549] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 550] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 551] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 552] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 553] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 554] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 555] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 556] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 557] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 558] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 559] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 560] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 561] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 562] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 563] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 564] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 565] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 566] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 567] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 568] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 569] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 570] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 571] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 572] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 573] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 574] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 575] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 576] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 577] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 578] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 579] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 580] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 581] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 582] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 583] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 584] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 585] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 586] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 587] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 588] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 589] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 590] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 591] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 592] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 593] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 594] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 595] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 596] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 597] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 598] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 599] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 600] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 601] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 602] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 603] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 604] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 605] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 606] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 607] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 608] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 609] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 610] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 611] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 612] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 613] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 614] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 615] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 616] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 617] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 618] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 619] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 620] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 621] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 622] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 623] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 624] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 625] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 626] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 627] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 628] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 629] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 630] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 631] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 632] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 633] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 634] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 635] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 636] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 637] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 638] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 639] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 640] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 641] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 642] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 643] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 644] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 645] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 646] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 647] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 648] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 649] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 650] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 651] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 652] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 653] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 654] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 655] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 656] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 657] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 658] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 659] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 660] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 661] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 662] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 663] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 664] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 665] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 666] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 667] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 668] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 669] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 670] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 671] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 672] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 673] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 674] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 675] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 676] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 677] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 678] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 679] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 680] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 681] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 682] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 683] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 684] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 685] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 686] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 687] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 688] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 689] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 690] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 691] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 692] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 693] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 694] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 695] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 696] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 697] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 698] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 699] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 700] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 701] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 702] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 703] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 704] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 705] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 706] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 707] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 708] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 709] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 710] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 711] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 712] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 713] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 714] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 715] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 716] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 717] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 718] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 719] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 720] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 721] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 722] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 723] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 724] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 725] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 726] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 727] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 728] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 729] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 730] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 731] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 732] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 733] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 734] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 735] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 736] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 737] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 738] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 739] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 740] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 741] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 742] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 743] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 744] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 745] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 746] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 747] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 748] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 749] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 750] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 751] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 752] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 753] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 754] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 755] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 756] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 757] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 758] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 759] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 760] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 761] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 762] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 763] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 764] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 765] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 766] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 767] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 768] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 769] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 770] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 771] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 772] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 773] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 774] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 775] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 776] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 777] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 778] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 779] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 780] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 781] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 782] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 783] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 784] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 785] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 786] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 787] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 788] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 789] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 790] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 791] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 792] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 793] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 794] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 795] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 796] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 797] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 798] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 799] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 800] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 801] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 802] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 803] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 804] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 805] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 806] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 807] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 808] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 809] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 810] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 811] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 812] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 813] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 814] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 815] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 816] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 817] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 818] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 819] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stderr] error: test failed, to rerun pass `--lib` [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 820] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 821] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 822] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 823] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 824] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 825] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 826] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 827] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 828] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 829] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 830] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 831] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 832] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 833] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 834] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 835] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 836] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 837] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 838] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 839] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 840] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 841] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 842] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 843] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 844] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 845] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 846] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 847] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 848] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 849] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 850] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 851] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 852] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 853] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 854] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 855] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 856] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 857] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 858] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 859] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 860] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 861] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 862] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 863] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 864] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 865] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 866] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 867] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 868] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 869] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 870] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 871] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 872] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 873] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 874] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 875] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 876] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 877] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 878] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 879] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 880] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 881] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 882] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 883] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 884] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 885] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 886] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 887] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 888] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 889] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 890] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 891] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 892] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 893] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 894] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 895] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 896] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 897] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 898] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 899] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 900] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 901] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 902] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 903] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 904] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 905] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 906] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 907] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 908] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 909] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 910] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 911] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 912] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 913] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 914] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 915] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 916] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 917] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 918] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 919] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 920] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 921] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 922] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 923] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 924] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 925] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 926] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 927] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 928] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 929] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 930] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 931] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 932] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 933] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 934] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 935] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 936] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 937] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 938] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 939] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 940] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 941] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 942] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 943] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 944] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 945] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 946] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 947] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 948] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 949] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 950] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 951] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 952] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 953] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 954] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 955] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 956] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 957] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 958] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 959] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 960] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 961] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 962] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 963] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 964] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 965] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 966] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 967] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 968] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 969] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 970] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 971] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 972] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 973] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 974] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 975] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 976] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 977] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 978] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 979] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 980] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 981] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 982] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 983] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 984] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 985] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 986] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 987] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 988] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 989] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 990] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 991] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 992] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 993] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 994] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 995] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 996] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 997] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 998] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [Epoch 999] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121597 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918384113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838398 [INFO] [stdout] [INFO] [stdout] thread 'models::sequential::test_sequential_xor1' panicked at src/models/sequential.rs:242:5: [INFO] [stdout] assertion `left == right` failed [INFO] [stdout] left: [0.0, 0.0, 0.0, 0.0] [INFO] [stdout] right: [0.0, 1.0, 1.0, 0.0] [INFO] [stdout] stack backtrace: [INFO] [stdout] 0: 0x61e319ad5072 - std::backtrace_rs::backtrace::libunwind::trace::h2d45396358f41939 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/../../backtrace/src/backtrace/libunwind.rs:117:9 [INFO] [stdout] 1: 0x61e319ad5072 - std::backtrace_rs::backtrace::trace_unsynchronized::hffcefc0b67f1d6e2 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/../../backtrace/src/backtrace/mod.rs:66:14 [INFO] [stdout] 2: 0x61e319ad5072 - std::sys::backtrace::_print_fmt::hd72f71d23b436b92 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/sys/backtrace.rs:66:9 [INFO] [stdout] 3: 0x61e319ad5072 - ::fmt::hdcfcb6d4c8489523 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/sys/backtrace.rs:39:26 [INFO] [stdout] 4: 0x61e319afb013 - core::fmt::rt::Argument::fmt::h2c56b3114963061a [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/fmt/rt.rs:173:76 [INFO] [stdout] 5: 0x61e319afb013 - core::fmt::write::h8a494366950f23bb [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/fmt/mod.rs:1468:25 [INFO] [stdout] 6: 0x61e319ad1fa3 - std::io::default_write_fmt::h7b8824096454f323 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/io/mod.rs:639:11 [INFO] [stdout] 7: 0x61e319ad1fa3 - std::io::Write::write_fmt::h4e71294925c334d0 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/io/mod.rs:1954:13 [INFO] [stdout] 8: 0x61e319ad4ec2 - std::sys::backtrace::BacktraceLock::print::hb2a626a81e06b2dc [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/sys/backtrace.rs:42:9 [INFO] [stdout] 9: 0x61e319ad65e9 - std::panicking::default_hook::{{closure}}::h4f78485264f12d10 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:300:27 [INFO] [stdout] 10: 0x61e319ad641e - std::panicking::default_hook::h2c66fc99e962531d [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:324:9 [INFO] [stdout] 11: 0x61e319a3d434 - as core::ops::function::Fn>::call::hb6bd65493727d71a [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/alloc/src/boxed.rs:1985:9 [INFO] [stdout] 12: 0x61e319a3d434 - test::test_main_with_exit_callback::{{closure}}::h60217ec76a0ece4a [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/test/src/lib.rs:145:21 [INFO] [stdout] 13: 0x61e319ad6fbe - as core::ops::function::Fn>::call::h318e4efb8c1a5689 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/alloc/src/boxed.rs:1985:9 [INFO] [stdout] 14: 0x61e319ad6fbe - std::panicking::rust_panic_with_hook::h33ac55f64bbd807d [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:841:13 [INFO] [stdout] 15: 0x61e319ad6d8a - std::panicking::begin_panic_handler::{{closure}}::h30e7cb89678a57fe [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:706:13 [INFO] [stdout] 16: 0x61e319ad5569 - std::sys::backtrace::__rust_end_short_backtrace::hed60f27456c16ced [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/sys/backtrace.rs:174:18 [INFO] [stdout] 17: 0x61e319ad6a1d - __rustc[de2ca18b4c54d5b8]::rust_begin_unwind [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:697:5 [INFO] [stdout] 18: 0x61e319af9680 - core::panicking::panic_fmt::h62f63d096dd276af [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/panicking.rs:75:14 [INFO] [stdout] 19: 0x61e319af99d3 - core::panicking::assert_failed_inner::h102b4539a88470c2 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/panicking.rs:448:17 [INFO] [stdout] 20: 0x61e3199de0ae - core::panicking::assert_failed::h7fa74c74e67e0488 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/panicking.rs:403:5 [INFO] [stdout] 21: 0x61e3199d4277 - easynn::models::sequential::test_sequential_xor1::h61d6020757d5b01d [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:242:5 [INFO] [stdout] 22: 0x61e3199d2d47 - easynn::models::sequential::test_sequential_xor1::{{closure}}::hb08db4313e8198fa [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:205:26 [INFO] [stdout] 23: 0x61e3199e6756 - core::ops::function::FnOnce::call_once::h77518890abc330cc [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 24: 0x61e319a42c9b - core::ops::function::FnOnce::call_once::h1f9474f1347fff52 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 25: 0x61e319a42c9b - test::__rust_begin_short_backtrace::ha52ab26e77157f03 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/test/src/lib.rs:648:18 [INFO] [stdout] 26: 0x61e319a41dd5 - test::run_test_in_process::{{closure}}::h229c1a11a50b261f [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/test/src/lib.rs:671:74 [INFO] [stdout] 27: 0x61e319a41dd5 - as core::ops::function::FnOnce<()>>::call_once::h78821afbf97b39a9 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/panic/unwind_safe.rs:272:9 [INFO] [stdout] 28: 0x61e319a41dd5 - std::panicking::catch_unwind::do_call::h53abf3ed5bd32ba3 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:589:40 [INFO] [stdout] 29: 0x61e319a41dd5 - std::panicking::catch_unwind::h6deb5fe1e91873c9 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:552:19 [INFO] [stdout] 30: 0x61e319a41dd5 - std::panic::catch_unwind::hea0829b6b565654b [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panic.rs:359:14 [INFO] [stdout] 31: 0x61e319a41dd5 - test::run_test_in_process::hdc44dfecea3db21b [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/test/src/lib.rs:671:27 [INFO] [stdout] 32: 0x61e319a41dd5 - test::run_test::{{closure}}::h0364ba59bf23f652 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/test/src/lib.rs:592:43 [INFO] [stdout] 33: 0x61e319a059d4 - test::run_test::{{closure}}::h32730b304eec05da [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/test/src/lib.rs:622:41 [INFO] [stdout] 34: 0x61e319a059d4 - std::sys::backtrace::__rust_begin_short_backtrace::h177cb952fc54ad2c [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/sys/backtrace.rs:158:18 [INFO] [stdout] 35: 0x61e319a093aa - std::thread::Builder::spawn_unchecked_::{{closure}}::{{closure}}::h119d903520007597 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/thread/mod.rs:559:17 [INFO] [stdout] 36: 0x61e319a093aa - as core::ops::function::FnOnce<()>>::call_once::hab88401d606702a6 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/panic/unwind_safe.rs:272:9 [INFO] [stdout] 37: 0x61e319a093aa - std::panicking::catch_unwind::do_call::h163fe12cca9901c2 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:589:40 [INFO] [stdout] 38: 0x61e319a093aa - std::panicking::catch_unwind::he81557d0e17cc1bc [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panicking.rs:552:19 [INFO] [stdout] 39: 0x61e319a093aa - std::panic::catch_unwind::hc2b8e79c20593955 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/panic.rs:359:14 [INFO] [stdout] 40: 0x61e319a093aa - std::thread::Builder::spawn_unchecked_::{{closure}}::hfa6b4978e07815cc [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/thread/mod.rs:557:30 [INFO] [stdout] 41: 0x61e319a093aa - core::ops::function::FnOnce::call_once{{vtable.shim}}::hddcd7484a13fd793 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/core/src/ops/function.rs:253:5 [INFO] [stdout] 42: 0x61e319ada03f - as core::ops::function::FnOnce>::call_once::h5924238c754de3b8 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/alloc/src/boxed.rs:1971:9 [INFO] [stdout] 43: 0x61e319ada03f - std::sys::pal::unix::thread::Thread::new::thread_start::hb6e99e73da4d28f8 [INFO] [stdout] at /rustc/1159e78c4747b02ef996e55082b704c09b970588/library/std/src/sys/pal/unix/thread.rs:107:17 [INFO] [stdout] 44: 0x748a89f02aa4 - [INFO] [stdout] 45: 0x748a89f8fa34 - clone [INFO] [stdout] 46: 0x0 - [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] models::sequential::test_sequential_xor1 [INFO] [stdout] [INFO] [stdout] test result: FAILED. 6 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.67s [INFO] [stdout] [INFO] running `Command { std: "docker" "inspect" "b80784c22f286425a995bf9f28257ee58bd3164cf4a02d0a1335fccbc7319ac0", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "b80784c22f286425a995bf9f28257ee58bd3164cf4a02d0a1335fccbc7319ac0", kill_on_drop: false }` [INFO] [stdout] b80784c22f286425a995bf9f28257ee58bd3164cf4a02d0a1335fccbc7319ac0