[INFO] fetching crate easynn 0.1.7-beta... [INFO] testing easynn-0.1.7-beta against 1.60.0 for beta-1.61-1 [INFO] extracting crate easynn 0.1.7-beta into /workspace/builds/worker-24/source [INFO] validating manifest of crates.io crate easynn 0.1.7-beta on toolchain 1.60.0 [INFO] running `Command { std: "/workspace/cargo-home/bin/cargo" "+1.60.0" "metadata" "--manifest-path" "Cargo.toml" "--no-deps", kill_on_drop: false }` [INFO] started tweaking crates.io crate easynn 0.1.7-beta [INFO] finished tweaking crates.io crate easynn 0.1.7-beta [INFO] tweaked toml for crates.io crate easynn 0.1.7-beta written to /workspace/builds/worker-24/source/Cargo.toml [INFO] running `Command { std: "/workspace/cargo-home/bin/cargo" "+1.60.0" "generate-lockfile" "--manifest-path" "Cargo.toml" "-Zno-index-update", kill_on_drop: false }` [INFO] running `Command { std: "/workspace/cargo-home/bin/cargo" "+1.60.0" "fetch" "--manifest-path" "Cargo.toml", kill_on_drop: false }` [INFO] [stderr] Blocking waiting for file lock on package cache [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-24/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-24/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:b0c94ce3c1162fcb8e57cac5b65ec2f72eabb1eebea4fcc35e269e823f681646" "/opt/rustwide/cargo-home/bin/cargo" "+1.60.0" "metadata" "--no-deps" "--format-version=1", kill_on_drop: false }` [INFO] [stdout] 9ffba63130758ef2389adad0c1f3ff0c411630d68607bd5542cab80d9036508b [INFO] running `Command { std: "docker" "start" "-a" "9ffba63130758ef2389adad0c1f3ff0c411630d68607bd5542cab80d9036508b", kill_on_drop: false }` [INFO] running `Command { std: "docker" "inspect" "9ffba63130758ef2389adad0c1f3ff0c411630d68607bd5542cab80d9036508b", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "9ffba63130758ef2389adad0c1f3ff0c411630d68607bd5542cab80d9036508b", kill_on_drop: false }` [INFO] [stdout] 9ffba63130758ef2389adad0c1f3ff0c411630d68607bd5542cab80d9036508b [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-24/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-24/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=warn" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:b0c94ce3c1162fcb8e57cac5b65ec2f72eabb1eebea4fcc35e269e823f681646" "/opt/rustwide/cargo-home/bin/cargo" "+1.60.0" "build" "--frozen" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] f941777ee35f33e0bbf0aed38784db902adeb6fa8dc88b8407f043684ddafca3 [INFO] running `Command { std: "docker" "start" "-a" "f941777ee35f33e0bbf0aed38784db902adeb6fa8dc88b8407f043684ddafca3", kill_on_drop: false }` [INFO] [stderr] Compiling crossbeam-utils v0.8.8 [INFO] [stderr] Compiling rayon-core v1.9.1 [INFO] [stderr] Compiling crossbeam-queue v0.3.5 [INFO] [stderr] Compiling ppv-lite86 v0.2.16 [INFO] [stderr] Compiling either v1.6.1 [INFO] [stderr] Compiling memoffset v0.6.5 [INFO] [stderr] Compiling crossbeam-epoch v0.9.8 [INFO] [stderr] Compiling rayon v1.5.1 [INFO] [stderr] Compiling num-traits v0.2.14 [INFO] [stderr] Compiling getrandom v0.2.6 [INFO] [stderr] Compiling num_cpus v1.13.1 [INFO] [stderr] Compiling rand_core v0.6.3 [INFO] [stderr] Compiling itertools v0.10.3 [INFO] [stderr] Compiling rand_chacha v0.3.1 [INFO] [stderr] Compiling rand v0.8.5 [INFO] [stderr] Compiling crossbeam-channel v0.5.4 [INFO] [stderr] Compiling crossbeam-deque v0.8.1 [INFO] [stderr] Compiling crossbeam v0.8.1 [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: associated function is never used: `pos2index` [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function is never used: `determine_thread` [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: 7 warnings emitted [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished dev [unoptimized + debuginfo] target(s) in 6.04s [INFO] running `Command { std: "docker" "inspect" "f941777ee35f33e0bbf0aed38784db902adeb6fa8dc88b8407f043684ddafca3", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "f941777ee35f33e0bbf0aed38784db902adeb6fa8dc88b8407f043684ddafca3", kill_on_drop: false }` [INFO] [stdout] f941777ee35f33e0bbf0aed38784db902adeb6fa8dc88b8407f043684ddafca3 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-24/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-24/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=warn" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:b0c94ce3c1162fcb8e57cac5b65ec2f72eabb1eebea4fcc35e269e823f681646" "/opt/rustwide/cargo-home/bin/cargo" "+1.60.0" "test" "--frozen" "--no-run" "--message-format=json", kill_on_drop: false }` [INFO] [stdout] 3656608d7ea0e8d5a5fdc1b41ace9e779ed49785094c6189e801e0a48d3a77f7 [INFO] running `Command { std: "docker" "start" "-a" "3656608d7ea0e8d5a5fdc1b41ace9e779ed49785094c6189e801e0a48d3a77f7", kill_on_drop: false }` [INFO] [stderr] Blocking waiting for file lock on package cache [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: associated function is never used: `pos2index` [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function is never used: `determine_thread` [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: 7 warnings emitted [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Compiling easynn v0.1.7-beta (/opt/rustwide/workdir) [INFO] [stdout] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stdout] --> src/models/sequential.rs:180:9 [INFO] [stdout] | [INFO] [stdout] 180 | use crate::layers::activation::Activation::*; [INFO] [stdout] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_imports)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused import: `rand::Rng` [INFO] [stdout] --> src/models/sequential.rs:207:9 [INFO] [stdout] | [INFO] [stdout] 207 | use rand::Rng; [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `olen` [INFO] [stdout] --> src/layers/dense.rs:96:13 [INFO] [stdout] | [INFO] [stdout] 96 | let olen = output.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_variables)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:148:13 [INFO] [stdout] | [INFO] [stdout] 148 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: unused variable: `dlen` [INFO] [stdout] --> src/layers/dense.rs:205:13 [INFO] [stdout] | [INFO] [stdout] 205 | let dlen = delta.flattened.len(); [INFO] [stdout] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:137:17 [INFO] [stdout] | [INFO] [stdout] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(unused_mut)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: variable does not need to be mutable [INFO] [stdout] --> src/models/sequential.rs:146:17 [INFO] [stdout] | [INFO] [stdout] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stdout] | ----^^^^^^ [INFO] [stdout] | | [INFO] [stdout] | help: remove this `mut` [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: associated function is never used: `pos2index` [INFO] [stdout] --> src/tensor/mod.rs:38:19 [INFO] [stdout] | [INFO] [stdout] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stdout] | ^^^^^^^^^ [INFO] [stdout] | [INFO] [stdout] = note: `#[warn(dead_code)]` on by default [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: function is never used: `determine_thread` [INFO] [stdout] --> src/layers/dense.rs:18:4 [INFO] [stdout] | [INFO] [stdout] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stdout] | ^^^^^^^^^^^^^^^^ [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] warning: 9 warnings emitted [INFO] [stdout] [INFO] [stdout] [INFO] [stderr] Finished test [unoptimized + debuginfo] target(s) in 2.15s [INFO] running `Command { std: "docker" "inspect" "3656608d7ea0e8d5a5fdc1b41ace9e779ed49785094c6189e801e0a48d3a77f7", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "3656608d7ea0e8d5a5fdc1b41ace9e779ed49785094c6189e801e0a48d3a77f7", kill_on_drop: false }` [INFO] [stdout] 3656608d7ea0e8d5a5fdc1b41ace9e779ed49785094c6189e801e0a48d3a77f7 [INFO] running `Command { std: "docker" "create" "-v" "/var/lib/crater-agent-workspace/builds/worker-24/target:/opt/rustwide/target:rw,Z" "-v" "/var/lib/crater-agent-workspace/builds/worker-24/source:/opt/rustwide/workdir:ro,Z" "-v" "/var/lib/crater-agent-workspace/cargo-home:/opt/rustwide/cargo-home:ro,Z" "-v" "/var/lib/crater-agent-workspace/rustup-home:/opt/rustwide/rustup-home:ro,Z" "-e" "SOURCE_DIR=/opt/rustwide/workdir" "-e" "CARGO_TARGET_DIR=/opt/rustwide/target" "-e" "CARGO_INCREMENTAL=0" "-e" "RUST_BACKTRACE=full" "-e" "RUSTFLAGS=--cap-lints=warn" "-e" "CARGO_HOME=/opt/rustwide/cargo-home" "-e" "RUSTUP_HOME=/opt/rustwide/rustup-home" "-w" "/opt/rustwide/workdir" "-m" "1610612736" "--user" "0:0" "--network" "none" "ghcr.io/rust-lang/crates-build-env/linux@sha256:b0c94ce3c1162fcb8e57cac5b65ec2f72eabb1eebea4fcc35e269e823f681646" "/opt/rustwide/cargo-home/bin/cargo" "+1.60.0" "test" "--frozen", kill_on_drop: false }` [INFO] [stdout] dea33f4a94644066f29a72888eee19b8f75f1a7307b05ea493827cbbb37e1138 [INFO] running `Command { std: "docker" "start" "-a" "dea33f4a94644066f29a72888eee19b8f75f1a7307b05ea493827cbbb37e1138", kill_on_drop: false }` [INFO] [stderr] warning: unused variable: `olen` [INFO] [stderr] --> src/layers/dense.rs:96:13 [INFO] [stderr] | [INFO] [stderr] 96 | let olen = output.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_olen` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_variables)]` on by default [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:148:13 [INFO] [stderr] | [INFO] [stderr] 148 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: unused variable: `dlen` [INFO] [stderr] --> src/layers/dense.rs:205:13 [INFO] [stderr] | [INFO] [stderr] 205 | let dlen = delta.flattened.len(); [INFO] [stderr] | ^^^^ help: if this is intentional, prefix it with an underscore: `_dlen` [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:137:17 [INFO] [stderr] | [INFO] [stderr] 137 | let mut cum_dw = &dws.par_chunks_mut(1).reduce_with(|dw1, dw2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_mut)]` on by default [INFO] [stderr] [INFO] [stderr] warning: variable does not need to be mutable [INFO] [stderr] --> src/models/sequential.rs:146:17 [INFO] [stderr] | [INFO] [stderr] 146 | let mut cum_db = &dbs.par_chunks_mut(1).reduce_with(|db1, db2| { [INFO] [stderr] | ----^^^^^^ [INFO] [stderr] | | [INFO] [stderr] | help: remove this `mut` [INFO] [stderr] [INFO] [stderr] warning: associated function is never used: `pos2index` [INFO] [stderr] --> src/tensor/mod.rs:38:19 [INFO] [stderr] | [INFO] [stderr] 38 | pub(crate) fn pos2index(&self, mut pos: usize) -> Result> { [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(dead_code)]` on by default [INFO] [stderr] [INFO] [stderr] warning: function is never used: `determine_thread` [INFO] [stderr] --> src/layers/dense.rs:18:4 [INFO] [stderr] | [INFO] [stderr] 18 | fn determine_thread(len: usize) -> usize { [INFO] [stderr] | ^^^^^^^^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: unused import: `crate::layers::activation::Activation::*` [INFO] [stderr] --> src/models/sequential.rs:180:9 [INFO] [stderr] | [INFO] [stderr] 180 | use crate::layers::activation::Activation::*; [INFO] [stderr] | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [INFO] [stderr] | [INFO] [stderr] = note: `#[warn(unused_imports)]` on by default [INFO] [stderr] [INFO] [stderr] warning: unused import: `rand::Rng` [INFO] [stderr] --> src/models/sequential.rs:207:9 [INFO] [stderr] | [INFO] [stderr] 207 | use rand::Rng; [INFO] [stderr] | ^^^^^^^^^ [INFO] [stderr] [INFO] [stderr] warning: `easynn` (lib) generated 7 warnings [INFO] [stderr] warning: `easynn` (lib test) generated 9 warnings (7 duplicates) [INFO] [stderr] Finished test [unoptimized + debuginfo] target(s) in 0.03s [INFO] [stderr] Running unittests (/opt/rustwide/target/debug/deps/easynn-789312a926c0aaf2) [INFO] [stdout] [INFO] [stdout] running 7 tests [INFO] [stdout] test layers::dense::test_add_weight_delta_to ... ok [INFO] [stdout] test layers::dense::test_dense_descend ... ok [INFO] [stdout] test layers::dense::test_dense_forward ... ok [INFO] [stdout] test layers::dense::test_dense_activate ... ok [INFO] [stdout] test models::sequential::test_sequential_predict ... ok [INFO] [stdout] test layers::dense::test_dense_backpropagate ... ok [INFO] [stdout] test models::sequential::test_sequential_xor1 ... FAILED [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] [INFO] [stdout] ---- models::sequential::test_sequential_xor1 stdout ---- [INFO] [stdout] [Epoch 0] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 1 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.9604185596375978 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.0015674251280297993 [INFO] [stdout] [Epoch 1] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.001505355092959273 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.9253998876208065 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.888754052070706 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.005793831145276215 [INFO] [stdout] [Epoch 2] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.005564395431921329 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8591380896416566 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.8251162212915606 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.01205781881296221 [INFO] [stdout] [Epoch 3] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.011580329187964953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.8002023497828095 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.7685143367311487 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.019848159190812027 [INFO] [stdout] [Epoch 4] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.019062172086849464 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.74769829268953 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.718089440298784 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.02874599875759748 [INFO] [stdout] [Epoch 5] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.027607657206787452 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.7008495725383002 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6730959294655602 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.038409825172986044 [INFO] [stdout] [Epoch 6] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.03688879609612365 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6589814576391274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.6328857919164097 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.04856277362000036 [INFO] [stdout] [Epoch 7] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.04663968778463307 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.6215067717437275 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5968951035824804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.05898191690311874 [INFO] [stdout] [Epoch 8] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.05664623299373674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.587913847577766 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5646324592135021 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.069489236312612 [INFO] [stdout] [Epoch 9] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.06673746255461077 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.557756198963823 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5356690534846807 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.07994401602167733 [INFO] [stdout] [Epoch 10] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.0767782329871938 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5306436612052806 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.5096301722213848 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.09023644266859013 [INFO] [stdout] [Epoch 11] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.08666307953888558 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.5062347862825616 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.48618788874561286 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.10028222481999864 [INFO] [stdout] [Epoch 12] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.09631104871709502 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.48423031082736945 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4650547905184527 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11001807508843714 [INFO] [stdout] [Epoch 13] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.10566135931490019 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.46436754160082117 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.44597858695328185 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.11939792153114469 [INFO] [stdout] [Epoch 14] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.11466976383847335 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.4464155259995044 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4287374711697823 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.12838973522111563 [INFO] [stdout] [Epoch 15] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.12330550170631838 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.430170894538372 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.4131361271145154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1369728780931109 [INFO] [stdout] [Epoch 16] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.13154875212057968 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.41545427881219094 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.39900228937109516 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.14513588978477168 [INFO] [stdout] [Epoch 17] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1393885085492479 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.402107222544485 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.38618377653159414 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.15287464460517455 [INFO] [stdout] [Epoch 18] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.14682080867876007 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.38998951535765497 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.37454593054936597 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.16019082030109638 [INFO] [stdout] [Epoch 19] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.15384726381712077 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3789768891491899 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.36396940433875913 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.16709062923632825 [INFO] [stdout] [Epoch 20] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16047384031851497 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.36895902569967015 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.354348248281843 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.17358377019087182 [INFO] [stdout] [Epoch 21] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.16670985289125614 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3598378315925033 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.34558825346132255 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.17968256542822 [INFO] [stdout] [Epoch 22] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.17256713583720315 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3515259428836344 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.33760551554532714 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.18540125314314523 [INFO] [stdout] [Epoch 23] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.17805936351861518 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3439454273841151 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.33032518845959097 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.1907554100365448 [INFO] [stdout] [Epoch 24] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.18320149579903416 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3370266570475451 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.32368040142835086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.19576148269294788 [INFO] [stdout] [Epoch 25] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.18800932797824166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3307073269056545 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3176113167600809 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2004364097665351 [INFO] [stdout] [Epoch 26] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.19249912793971308 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3249316003688266 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.312064308994113 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.20479731980329716 [INFO] [stdout] [Epoch 27] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.1966873459390177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3196493635894549 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3069912487912058 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2088612919170291 [INFO] [stdout] [Epoch 28] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20059038475704424 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.31481557404733856 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.3023488773149586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21264516856047957 [INFO] [stdout] [Epoch 29] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2042244198854126 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3103896906196743 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2980982588710313 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2161654113455869 [INFO] [stdout] [Epoch 30] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.20760526105622826 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3063351741963246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2942043012980472 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.21943799231545394 [INFO] [stdout] [Epoch 31] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21074824781968732 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.3026190494387818 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.29063533508090406 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22247831429556822 [INFO] [stdout] [Epoch 32] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21366817304938787 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2992115195968789 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2873627434207415 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2253011549867666 [INFO] [stdout] [Epoch 33] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2163792292492137 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2960856274233514 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2843606365772866 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.22792063033645674 [INFO] [stdout] [Epoch 34] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.21889497337505504 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.29321695619064864 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.28160556472539966 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.230350173462174 [INFO] [stdout] [Epoch 35] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22122830659299297 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2905833656405265 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27907626436106325 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2326025260234975 [INFO] [stdout] [Epoch 36] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22339146599288714 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28816475840515143 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27675343397220953 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23468973946236274 [INFO] [stdout] [Epoch 37] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2253960257795725 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2859428730458407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2746195352731281 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23662318397290083 [INFO] [stdout] [Epoch 38] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.22725290588749247 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28390110037686983 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2726586168018491 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.23841356343284578 [INFO] [stdout] [Epoch 39] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2289723863208229 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2820243201894471 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.27085615710984884 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2400709348400956 [INFO] [stdout] [Epoch 40] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23056412582034497 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.28029875587568226 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26919892514290966 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24160473105935953 [INFO] [stdout] [Epoch 41] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2320371837093254 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2787118447832404 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2676748557297289 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24302378590275353 [INFO] [stdout] [Epoch 42] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23340004398092046 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2772521224161381 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2662729383683642 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24433636075131146 [INFO] [stdout] [Epoch 43] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23466064086547497 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27590911884243624 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2649831177361815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24555017207725374 [INFO] [stdout] [Epoch 44] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23582638526290947 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27467326588106195 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26379620455207786 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.246672419354236 [INFO] [stdout] [Epoch 45] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23690419154772277 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2735358138224824 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.26270379559501844 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24770981294869493 [INFO] [stdout] [Epoch 46] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2379005043558407 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2724887565955909 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2616982018343122 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.24866860167322677 [INFO] [stdout] [Epoch 47] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23882132504688072 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.27152476442945606 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2607723837579566 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2495545997555348 [INFO] [stdout] [Epoch 48] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.23967223760512898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2706371231765668 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2599198930986821 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25037321303631405 [INFO] [stdout] [Epoch 49] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2404584337999891 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2698196795664386 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2591348202555151 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2511294642585554 [INFO] [stdout] [Epoch 50] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2411847374738294 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2690667917471369 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.258411746793858 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2518280173508781 [INFO] [stdout] [Epoch 51] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24185562786369585 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26837328454932496 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25774570248107964 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2524732006401268 [INFO] [stdout] [Epoch 52] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24247526189469001 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.267734408974442 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25713212637896227 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25306902895481187 [INFO] [stdout] [Epoch 53] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24304749540811338 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26714580546698063 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2565668315703966 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2536192246020976 [INFO] [stdout] [Epoch 54] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2435759033077664 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26660347058172024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2560459731465926 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2541272372178124 [INFO] [stdout] [Epoch 55] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2440637986238987 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2661037267012172 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2555660191237578 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2545962625021302 [INFO] [stdout] [Epoch 56] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24451425050695733 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26564319449772117 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25512372399552036 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2550292598637534 [INFO] [stdout] [Epoch 57] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2449301011730602 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26521876786773446 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2547161046600813 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2554289690031648 [INFO] [stdout] [Epoch 58] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24531398183055078 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2648275910972886 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2543404184897452 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2557979254712191 [INFO] [stdout] [Epoch 59] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24566832762246996 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2644670380422585 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25399414333569437 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25613847524341565 [INFO] [stdout] [Epoch 60] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24599539162368741 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2641346931311147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.253674959283032 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25645278835290614 [INFO] [stdout] [Epoch 61] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24629725793404203 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26382833401786926 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25338073199067124 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25674287162693127 [INFO] [stdout] [Epoch 62] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24657585391041564 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2635459157309283 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25310949746789324 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25701058057214443 [INFO] [stdout] [Epoch 63] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24683296158139828 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2632855561794543 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25285944815465766 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2572576304543545 [INFO] [stdout] [Epoch 64] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24707022828827277 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26304552289290384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25262892018625466 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25748560661775227 [INFO] [stdout] [Epoch 65] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24728917659559985 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26282422088188934 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25241638173487646 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2576959740877912 [INFO] [stdout] [Epoch 66] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2474912135138252 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2626201815196006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2522204223313345 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25789008650068695 [INFO] [stdout] [Epoch 67] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24767763907517032 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26243205235289174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2520397430796273 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25806919440104925 [INFO] [stdout] [Epoch 68] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24784965430267822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26225858776093514 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2518731476855123 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25823445294754466 [INFO] [stdout] [Epoch 69] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2480083686107323 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2620986403872018 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.251719534227779 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2583869290647563 [INFO] [stdout] [Epoch 70] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24815480667370235 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26195115327754753 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2515778876076671 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25852760807760833 [INFO] [stdout] [Epoch 71] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2482899147976454 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26181515266347655 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2514472726179133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.258657399862885 [INFO] [stdout] [Epoch 72] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24841456682822505 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.261689741335298 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25132682757833086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2587771445505382 [INFO] [stdout] [Epoch 73] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24852956962624723 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26157409255495556 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2512157584896899 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25888761780565506 [INFO] [stdout] [Epoch 74] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24863566814046142 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26146744446287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2511133336620511 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25898953572016387 [INFO] [stdout] [Epoch 75] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24873355010555573 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26136909493724486 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2510188787776407 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2590835593416278 [INFO] [stdout] [Epoch 76] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2488238503916096 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26127839686798043 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2509317723519192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2591702988647812 [INFO] [stdout] [Epoch 77] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24890715502964617 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2611947538106974 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2508514415597046 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.259250317509858 [INFO] [stdout] [Epoch 78] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24898400493637798 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2611176159893845 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2507773583961157 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2593241351102045 [INFO] [stdout] [Epoch 79] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24905489935975075 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2610464766189324 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25070903614473355 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2593922314301999 [INFO] [stdout] [Epoch 80] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24912029906547428 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26098086852129126 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2506460261277592 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25945504923310475 [INFO] [stdout] [Epoch 81] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24918062928338416 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2609203610112438 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2505879147151096 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2595129971171316 [INFO] [stdout] [Epoch 82] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24923628243120352 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2608645570298295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2505343205713594 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25956645213677637 [INFO] [stdout] [Epoch 83] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24928762063207038 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2608130905053175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25048489212121805 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2596157622252731 [INFO] [stdout] [Epoch 84] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24933497804106272 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260765623923313 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25043930521586105 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25966124843291993 [INFO] [stdout] [Epoch 85] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2493786629948867 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2607218460891273 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.250397260983909 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25970320699498334 [INFO] [stdout] [Epoch 86] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24941895999789246 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26068147006694403 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2503584838522043 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25974191124191476 [INFO] [stdout] [Epoch 87] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24945613155664542 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26064423128159686 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.250322719722757 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25977761336369215 [INFO] [stdout] [Epoch 88] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24949041987440043 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2606098857699414 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25028973429336304 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25981054603925335 [INFO] [stdout] [Epoch 89] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2495220484160095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26057820856987673 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25025931151042097 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2598409239411852 [INFO] [stdout] [Epoch 90] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2495512233530247 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26054899223604655 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25023125214341063 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25986894512509173 [INFO] [stdout] [Epoch 91] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24957813489804873 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26052204547214336 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25020537247135805 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25989479231237134 [INFO] [stdout] [Epoch 92] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24960295853671205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26049719187055986 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25018150307239717 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599186340744887 [INFO] [stdout] [Epoch 93] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24962585616504943 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26047426875087776 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501594877082546 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25994062592622647 [INFO] [stdout] [Epoch 94] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24964697713945858 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26045312608937526 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2501391822961477 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599609113348491 [INFO] [stdout] [Epoch 95] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24966645924589975 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26043362553235705 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25012045396118743 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2599796226515846 [INFO] [stdout] [Epoch 96] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2496844295944925 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2604156394866956 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25010318016293415 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.25999688197136145 [INFO] [stdout] [Epoch 97] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24970100544520615 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26039905028149624 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25008724789026066 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600128019262825 [INFO] [stdout] [Epoch 98] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497162949699124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26038374939528747 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500725529191458 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600274864179091 [INFO] [stdout] [Epoch 99] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2497303979556707 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603696367435828 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.25005899912844876 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26004103129304507 [INFO] [stdout] [Epoch 100] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24974340645375126 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26035662002207244 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500464978691104 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600535249673538 [INFO] [stdout] [Epoch 101] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24975540537855745 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603446141010765 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500349673825858 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26006504900081545 [INFO] [stdout] [Epoch 102] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24976647306029398 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603335404672402 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500243322646495 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600756786287246 [INFO] [stdout] [Epoch 103] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249776681754938 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603233267087699 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500145229710146 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600854832516473 [INFO] [stdout] [Epoch 104] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24978609811479305 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603139060407987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2500054753614951 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2600945268874976 [INFO] [stdout] [Epoch 105] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24979478362266366 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2603052168677421 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24999713027969164 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601028685886503 [INFO] [stdout] [Epoch 106] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24980279499245073 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602972023797504 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24998943316542444 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26011056282678485 [INFO] [stdout] [Epoch 107] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24981018453875514 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602898101805926 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499823336973534 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26011765984794843 [INFO] [stdout] [Epoch 108] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24981700051788067 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26028299194451776 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24997578546342702 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26012420600013636 [INFO] [stdout] [Epoch 109] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498232874424421 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602767030998271 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24996974565698615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601302440355113 [INFO] [stdout] [Epoch 110] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24982908637161627 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26027090253707813 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499641747965221 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26013581338921793 [INFO] [stdout] [Epoch 111] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24983443517891607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26026555233999327 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24995903646724182 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601409504366046 [INFO] [stdout] [Epoch 112] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498393687992263 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602606175373052 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24995429708274022 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26014568873051863 [INFO] [stdout] [Epoch 113] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24984391945670129 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26025606587390687 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994992566521243 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601500592202148 [INFO] [stdout] [Epoch 114] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24984811687500547 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602518675998004 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994589364276062 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26015409045330173 [INFO] [stdout] [Epoch 115] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985198847126233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602479952754585 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24994217466246285 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601578087620372 [INFO] [stdout] [Epoch 116] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985555953497182 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26024442359232114 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993874441797775 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016123843518174 [INFO] [stdout] [Epoch 117] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24985885339305997 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26024112920724685 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24993558049055237 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601644018765318 [INFO] [stdout] [Epoch 118] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986189156213248 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602380905898337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499326622023889 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26016731975116025 [INFO] [stdout] [Epoch 119] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986469388892577 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26023528788160905 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992997048140989 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260170011120319 [INFO] [stdout] [Epoch 120] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986727867986588 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602327027661612 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499274877365337 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26017249356587946 [INFO] [stdout] [Epoch 121] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24986966282058212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26023031834936566 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992519774264346 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601747833051231 [INFO] [stdout] [Epoch 122] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987186188615176 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022811904891796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499230855344936 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601768952966289 [INFO] [stdout] [Epoch 123] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249873890242794 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022609049245027 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24992113730886192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601788433379479 [INFO] [stdout] [Epoch 124] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987576114167673 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602242194235634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991934033430302 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018064015570025 [INFO] [stdout] [Epoch 125] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24987748680544622 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022249361516064 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499176828679131 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018229748868527 [INFO] [stdout] [Epoch 126] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249879078508045 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26022090178951307 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991615407856133 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601838261645407 [INFO] [stdout] [Epoch 127] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498805466483367 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602194335445362 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991474397608546 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018523617045836 [INFO] [stdout] [Epoch 128] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988190081801995 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602180792857906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499134433459862 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26018653671840924 [INFO] [stdout] [Epoch 129] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988314986427201 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602168301637676 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991224368919548 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601877363053112 [INFO] [stdout] [Epoch 130] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988430194753278 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602156780160437 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991113716652136 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601888427685267 [INFO] [stdout] [Epoch 131] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988536459480495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602146153139287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24991011654741013 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601898633370525 [INFO] [stdout] [Epoch 132] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988634474881719 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602136351132581 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499091751626861 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601908046787405 [INFO] [stdout] [Epoch 133] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988724881337426 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602127310090059 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990830686096235 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019167294385076 [INFO] [stdout] [Epoch 134] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988808269518628 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602118970934227 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990750596843633 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601924738052273 [INFO] [stdout] [Epoch 135] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988885184245224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021112791742546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499067672518086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019321249535426 [INFO] [stdout] [Epoch 136] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24988956128045026 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26021041845498405 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499060858840798 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019389384053704 [INFO] [stdout] [Epoch 137] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989021564436387 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020976407027474 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990545741300513 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601945222924306 [INFO] [stdout] [Epoch 138] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989081920956244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602091604873841 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990487773199688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019510195712003 [INFO] [stdout] [Epoch 139] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989137591953026 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602086037623643 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990434305328796 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019563662194567 [INFO] [stdout] [Epoch 140] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989188941162876 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602080902574603 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990384988317832 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260196129780244 [INFO] [stdout] [Epoch 141] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989236304085852 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602076166173361 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249903394999203 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019658465417045 [INFO] [stdout] [Epoch 142] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989279990177757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020717974714824 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499029754290747 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601970042157497 [INFO] [stdout] [Epoch 143] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989320284871827 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020677679232224 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990258843125965 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601973912062914 [INFO] [stdout] [Epoch 144] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989357451443456 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020640511989723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990223147706284 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601977481543005 [INFO] [stdout] [Epoch 145] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989391732730254 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020606230132187 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499019022341031 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601980773919958 [INFO] [stdout] [Epoch 146] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989423352718512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602057460965836 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499015985510724 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601983810705476 [INFO] [stdout] [Epoch 147] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498945251800664 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602054544395713 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990131844367794 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601986611741319 [INFO] [stdout] [Epoch 148] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989479419154867 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020518542457444 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499010600816749 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019891953289315 [INFO] [stdout] [Epoch 149] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989504231930312 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020493729383004 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990082177690798 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019915783490216 [INFO] [stdout] [Epoch 150] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989527118455251 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602047084260367 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990060197227926 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601993776371844 [INFO] [stdout] [Epoch 151] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989548228266448 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020449732576045 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2499003992315742 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601995803758933 [INFO] [stdout] [Epoch 152] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989567699292056 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602043026136631 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990021223007586 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2601997673756934 [INFO] [stdout] [Epoch 153] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989585658752853 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020412301748863 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24990003974590994 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26019993985841444 [INFO] [stdout] [Epoch 154] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989602223993393 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602039573637507 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498998806520601 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602000989510352 [INFO] [stdout] [Epoch 155] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989617503248684 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260203804570064 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989973390900325 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602002456930461 [INFO] [stdout] [Epoch 156] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989631596351428 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602036636380719 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989959855791818 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020038104324145 [INFO] [stdout] [Epoch 157] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989644595384186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602035336469236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989947371441945 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602005058859832 [INFO] [stdout] [Epoch 158] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989656585281103 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020341374725636 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249899358562779 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602006210369798 [INFO] [stdout] [Epoch 159] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989667644382824 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602033031556451 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989925235059562 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602007272486152 [INFO] [stdout] [Epoch 160] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989677844948294 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602032011494851 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989915438387952 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020082521486515 [INFO] [stdout] [Epoch 161] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498968725362694 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020310706226857 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989906402251685 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020091557583125 [INFO] [stdout] [Epoch 162] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989695931894124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260203020279231 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989898067608768 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020099892192305 [INFO] [stdout] [Epoch 163] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498970393645279 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602029402333332 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498989038000073 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602010757977164 [INFO] [stdout] [Epoch 164] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498971131960399 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602028664015564 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989883289196888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602011467055106 [INFO] [stdout] [Epoch 165] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498971812958854 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602027983014855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249898767488661 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020121210861064 [INFO] [stdout] [Epoch 166] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989724410902278 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602027354881566 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989870716273999 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201272434355 [INFO] [stdout] [Epoch 167] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498973020458676 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602026775511487 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989865152003748 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201328076907 [INFO] [stdout] [Epoch 168] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989735548497466 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020262411190287 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989860019698595 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602013793998306 [INFO] [stdout] [Epoch 169] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989740477551045 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602025748212491 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989855285824203 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020142673846564 [INFO] [stdout] [Epoch 170] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498974502395356 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602025293571236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498985091944959 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602014704021193 [INFO] [stdout] [Epoch 171] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989749217410862 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602024874224651 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989846892045 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015106760863 [INFO] [stdout] [Epoch 172] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989753085322663 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020244874327436 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989843177295523 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015478235139 [INFO] [stdout] [Epoch 173] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498975665296162 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020241306682296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498983975092913 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602015820871209 [INFO] [stdout] [Epoch 174] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498975994363843 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602023801600022 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989836590558065 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016136907829 [INFO] [stdout] [Epoch 175] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989762978854133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602023498078005 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989833675532616 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016428409962 [INFO] [stdout] [Epoch 176] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989765778440617 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020232181189745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989830986806097 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016697282262 [INFO] [stdout] [Epoch 177] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897683606902 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022959893693 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989828506810488 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602016945281524 [INFO] [stdout] [Epoch 178] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989770742475112 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022721714926 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989826219341613 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020171740281567 [INFO] [stdout] [Epoch 179] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989772939357774 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022502026424 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989824109453246 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020173850167766 [INFO] [stdout] [Epoch 180] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989774965692482 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602022299392755 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498982216335949 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017579625968 [INFO] [stdout] [Epoch 181] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989776834719166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020221124899157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498982036834463 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602017759127298 [INFO] [stdout] [Epoch 182] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498977855864994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021940096694 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981871268013 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020179246936137 [INFO] [stdout] [Epoch 183] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989780148748839 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021781086681 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989817185547974 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020180774067164 [INFO] [stdout] [Epoch 184] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989781615405474 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020216344209113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989815776969923 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020182182644236 [INFO] [stdout] [Epoch 185] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897829682029 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260202149914108 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989814477742428 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020183481870923 [INFO] [stdout] [Epoch 186] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989784215980212 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020213743632736 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981327937638 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020184680236264 [INFO] [stdout] [Epoch 187] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989785366890294 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020212592722 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989812174041712 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018578557033 [INFO] [stdout] [Epoch 188] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989786428453134 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020211531158605 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989811154516234 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020186805095297 [INFO] [stdout] [Epoch 189] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989787407604913 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602021055200637 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498981021413842 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018774547269 [INFO] [stdout] [Epoch 190] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989788310743363 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020209648867515 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989809346763872 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602018861284687 [INFO] [stdout] [Epoch 191] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978914376953 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020881584101 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989808546725215 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020189412885214 [INFO] [stdout] [Epoch 192] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498978991212636 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020804748389 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807808795048 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020190150815103 [INFO] [stdout] [Epoch 193] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989790620834237 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020207338775764 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989807128151764 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019083145816 [INFO] [stdout] [Epoch 194] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989791274523826 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020668508596 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989806500348083 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020191459261643 [INFO] [stdout] [Epoch 195] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897918774663 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020608214331 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989805921281966 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020192038327594 [INFO] [stdout] [Epoch 196] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792433601235 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020205526008217 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980538716983 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020192572439593 [INFO] [stdout] [Epoch 197] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989792946562409 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020205013046915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804894521803 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201930650875 [INFO] [stdout] [Epoch 198] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989793419701462 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020204539907754 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804440118946 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019351949026 [INFO] [stdout] [Epoch 199] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989793856109865 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020204103499245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989804020992218 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020193938616887 [INFO] [stdout] [Epoch 200] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979425863909 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020370096995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980363440308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019432520596 [INFO] [stdout] [Epoch 201] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979462991923 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020332968974 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989803277825565 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201946817834 [INFO] [stdout] [Epoch 202] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989794972376211 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020298723269 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802948929823 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019501067908 [INFO] [stdout] [Epoch 203] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979528824763 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020267136123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802645566883 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020195314041983 [INFO] [stdout] [Epoch 204] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795579597374 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020202380011437 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980236575454 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019559385429 [INFO] [stdout] [Epoch 205] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989795848329105 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020211127966 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989802107664555 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019585194422 [INFO] [stdout] [Epoch 206] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796096198688 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020186341005 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801869610573 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019608999818 [INFO] [stdout] [Epoch 207] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796324825708 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020163478299 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980165003716 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196309571575 [INFO] [stdout] [Epoch 208] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979653570399 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020142390469 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801447509633 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196512099064 [INFO] [stdout] [Epoch 209] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796730211408 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201229397255 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989801260704694 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019669890399 [INFO] [stdout] [Epoch 210] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989796909618858 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020201049989783 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980108840176 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020196871206897 [INFO] [stdout] [Epoch 211] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797075098572 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020088451005 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800929475045 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019703013361 [INFO] [stdout] [Epoch 212] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797227731791 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200731876814 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800782886082 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197176722554 [INFO] [stdout] [Epoch 213] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797368515823 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200591092774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800647677093 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019731193153 [INFO] [stdout] [Epoch 214] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797498370522 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020046123806 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800522964634 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019743664398 [INFO] [stdout] [Epoch 215] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797618144358 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020034146421 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980040793383 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197551674773 [INFO] [stdout] [Epoch 216] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797728619936 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200230988627 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980030183308 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019765777552 [INFO] [stdout] [Epoch 217] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797830519095 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602020012908946 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800203969126 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197755639457 [INFO] [stdout] [Epoch 218] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989797924507628 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020200035100927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498980011370252 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020197845906057 [INFO] [stdout] [Epoch 219] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798011199674 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019994840886 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989800030443482 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019792916509 [INFO] [stdout] [Epoch 220] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979809116165 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199868446886 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799953647995 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019800596056 [INFO] [stdout] [Epoch 221] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798164916027 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019979469249 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799882814298 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019807679427 [INFO] [stdout] [Epoch 222] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798232944718 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199726663806 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799817479538 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198142129014 [INFO] [stdout] [Epoch 223] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979829569222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199663916305 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979975721684 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019820239171 [INFO] [stdout] [Epoch 224] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798353568513 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199606039995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799701632442 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198257976107 [INFO] [stdout] [Epoch 225] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979840695177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019955265674 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979965036317 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198309245374 [INFO] [stdout] [Epoch 226] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979845619078 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019950341773 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799603074023 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019835653452 [INFO] [stdout] [Epoch 227] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979850160728 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199458001225 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979955945601 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019840015252 [INFO] [stdout] [Epoch 228] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798543498 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019941611049 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799519224154 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019844038437 [INFO] [stdout] [Epoch 229] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979858213668 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199377471803 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979948211557 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198477492956 [INFO] [stdout] [Epoch 230] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798617775766 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199341832717 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799447887798 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198511720716 [INFO] [stdout] [Epoch 231] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798650648115 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199308960373 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799416317188 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019854329133 [INFO] [stdout] [Epoch 232] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979868096853 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199278639944 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799387197462 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019857241105 [INFO] [stdout] [Epoch 233] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798708935118 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019925067336 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799360338344 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019859927016 [INFO] [stdout] [Epoch 234] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798734730617 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199224877855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799335564356 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019862404415 [INFO] [stdout] [Epoch 235] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798758523551 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019920108491 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799312713612 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019864689489 [INFO] [stdout] [Epoch 236] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798780469405 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019917913906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979929163683 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019866797167 [INFO] [stdout] [Epoch 237] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798800711555 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019915889691 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799272196264 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019868741224 [INFO] [stdout] [Epoch 238] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798819382278 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019914022618 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799254264902 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201987053436 [INFO] [stdout] [Epoch 239] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798836603552 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201991230049 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799237725588 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201987218829 [INFO] [stdout] [Epoch 240] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798852487902 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199107120545 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799222470263 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019873713822 [INFO] [stdout] [Epoch 241] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798867139124 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199092469315 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799208399227 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198751209267 [INFO] [stdout] [Epoch 242] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798880652947 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199078955497 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799195420548 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198764187935 [INFO] [stdout] [Epoch 243] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979889311767 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019906649077 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799183449435 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019877615904 [INFO] [stdout] [Epoch 244] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798904614724 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019905499372 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799172407656 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019878720082 [INFO] [stdout] [Epoch 245] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798915219247 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199044389175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799162223073 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019879738539 [INFO] [stdout] [Epoch 246] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979892500052 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199034607905 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799152829137 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198806779327 [INFO] [stdout] [Epoch 247] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798934022456 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199025585966 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799144164473 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019881544399 [INFO] [stdout] [Epoch 248] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798942344 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020199017264417 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799136172464 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019882343599 [INFO] [stdout] [Epoch 249] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798950019526 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019900958889 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799128800888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198830807567 [INFO] [stdout] [Epoch 250] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798957099188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019900250923 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799122001582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019883760687 [INFO] [stdout] [Epoch 251] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798963629242 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198995979166 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799115730113 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019884387833 [INFO] [stdout] [Epoch 252] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979896965236 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198989956045 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799109945512 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019884966293 [INFO] [stdout] [Epoch 253] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798975207894 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989844005 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979910460998 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198854998455 [INFO] [stdout] [Epoch 254] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979898033213 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019897927627 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799099688656 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198859919785 [INFO] [stdout] [Epoch 255] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798985058573 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198974549824 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979909514938 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019886445905 [INFO] [stdout] [Epoch 256] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798989418097 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989701903 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799090962506 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019886864592 [INFO] [stdout] [Epoch 257] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979899343917 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198966169217 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799087100661 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198872507766 [INFO] [stdout] [Epoch 258] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989798997148083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989624603 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799083538616 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198876069806 [INFO] [stdout] [Epoch 259] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799000569077 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989590393 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799080253094 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019887935533 [INFO] [stdout] [Epoch 260] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799003724497 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198955883883 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799077222638 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198882385787 [INFO] [stdout] [Epoch 261] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799006634952 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198952973417 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799074427432 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198885180984 [INFO] [stdout] [Epoch 262] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799009319455 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198950288914 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799071849234 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198887759177 [INFO] [stdout] [Epoch 263] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799011795563 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198947812806 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799069471189 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889013722 [INFO] [stdout] [Epoch 264] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799014079436 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894552892 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799067277746 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198892330665 [INFO] [stdout] [Epoch 265] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799016186023 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894342234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906525459 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198894353824 [INFO] [stdout] [Epoch 266] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799018129066 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019894147929 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799063388485 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201988962199 [INFO] [stdout] [Epoch 267] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799019921255 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989396871 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799061667256 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198897941127 [INFO] [stdout] [Epoch 268] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799021574322 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893803402 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979906007965 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019889952873 [INFO] [stdout] [Epoch 269] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799023099057 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893650929 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990586153 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198900993086 [INFO] [stdout] [Epoch 270] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799024505424 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893510293 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799057264622 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890234375 [INFO] [stdout] [Epoch 271] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799025802614 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198933805727 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799056018808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890358956 [INFO] [stdout] [Epoch 272] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799026999096 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893260924 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799054869705 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890473867 [INFO] [stdout] [Epoch 273] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799028102694 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198931505645 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799053809814 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890579856 [INFO] [stdout] [Epoch 274] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979902912061 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019893048772 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799052832207 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890677616 [INFO] [stdout] [Epoch 275] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030059512 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892954882 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905193049 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890767787 [INFO] [stdout] [Epoch 276] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799030925522 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989286828 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799051098768 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198908509584 [INFO] [stdout] [Epoch 277] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799031724297 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892788403 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979905033163 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890927673 [INFO] [stdout] [Epoch 278] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799032461069 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198927147253 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904962404 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019890998431 [INFO] [stdout] [Epoch 279] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799033140636 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198926467675 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799048971384 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891063696 [INFO] [stdout] [Epoch 280] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799033767446 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892584087 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799048369388 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891123897 [INFO] [stdout] [Epoch 281] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799034345608 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198925262694 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799047814112 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198911794223 [INFO] [stdout] [Epoch 282] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903487888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892472942 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904730196 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198912306375 [INFO] [stdout] [Epoch 283] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799035370752 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892423755 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799046829567 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891277876 [INFO] [stdout] [Epoch 284] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799035824448 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892378385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799046393837 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891321449 [INFO] [stdout] [Epoch 285] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903624292 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198923365373 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045991942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891361639 [INFO] [stdout] [Epoch 286] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036628899 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892297939 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045621247 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891398708 [INFO] [stdout] [Epoch 287] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799036984914 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892262337 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799045279323 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914329 [INFO] [stdout] [Epoch 288] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037313307 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198922294974 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044963942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198914644377 [INFO] [stdout] [Epoch 289] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037616203 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198921992077 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044673044 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891493528 [INFO] [stdout] [Epoch 290] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799037895583 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989217127 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799044404726 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891520359 [INFO] [stdout] [Epoch 291] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038153268 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198921455 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904415724 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915451065 [INFO] [stdout] [Epoch 292] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038390942 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198921217325 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904392898 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915679327 [INFO] [stdout] [Epoch 293] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038610172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989209981 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043718436 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198915889864 [INFO] [stdout] [Epoch 294] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038812385 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892079589 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904352423 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916084064 [INFO] [stdout] [Epoch 295] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799038998897 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920609366 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990433451 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916263193 [INFO] [stdout] [Epoch 296] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903917093 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198920437326 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043179878 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916428416 [INFO] [stdout] [Epoch 297] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039329616 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892027864 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799043027486 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891658081 [INFO] [stdout] [Epoch 298] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039475974 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019892013228 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042886926 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916721365 [INFO] [stdout] [Epoch 299] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979903961096 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891999728 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042757269 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916851006 [INFO] [stdout] [Epoch 300] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039735486 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919872756 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042637678 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198916970594 [INFO] [stdout] [Epoch 301] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039850338 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891975791 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042527377 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891708089 [INFO] [stdout] [Epoch 302] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799039956265 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891965198 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042425645 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917182624 [INFO] [stdout] [Epoch 303] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040053973 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919554255 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042331806 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917276466 [INFO] [stdout] [Epoch 304] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040144103 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891946413 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042245248 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891736302 [INFO] [stdout] [Epoch 305] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904022723 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919381005 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799042165417 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891744285 [INFO] [stdout] [Epoch 306] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040303898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919304327 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904209177 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917516485 [INFO] [stdout] [Epoch 307] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040374633 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891923359 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904202385 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989175844 [INFO] [stdout] [Epoch 308] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040439856 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919168364 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990419612 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891764704 [INFO] [stdout] [Epoch 309] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040500024 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919108195 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041903415 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891770483 [INFO] [stdout] [Epoch 310] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904055553 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919052684 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904185011 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917758136 [INFO] [stdout] [Epoch 311] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040606722 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198919001486 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904180095 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989178073 [INFO] [stdout] [Epoch 312] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904065394 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891895427 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041755595 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917852644 [INFO] [stdout] [Epoch 313] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904069749 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891891071 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904171377 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891789446 [INFO] [stdout] [Epoch 314] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904073765 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891887054 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041675198 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198917933024 [INFO] [stdout] [Epoch 315] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904077471 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891883348 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041639624 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989179686 [INFO] [stdout] [Epoch 316] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040808874 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891879932 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990416068 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918001425 [INFO] [stdout] [Epoch 317] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990408404 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891876779 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041576533 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891803169 [INFO] [stdout] [Epoch 318] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799040869476 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989187387 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041548594 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891805962 [INFO] [stdout] [Epoch 319] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990408963 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891871188 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041522842 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891808537 [INFO] [stdout] [Epoch 320] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904092103 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918687143 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041499086 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918109133 [INFO] [stdout] [Epoch 321] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904094385 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918664333 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041477176 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891813104 [INFO] [stdout] [Epoch 322] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904096489 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891864328 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041456962 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918151255 [INFO] [stdout] [Epoch 323] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904098431 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918623855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041438315 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918169885 [INFO] [stdout] [Epoch 324] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904100221 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891860596 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904142112 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891818707 [INFO] [stdout] [Epoch 325] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041018726 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918589443 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041405258 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918202936 [INFO] [stdout] [Epoch 326] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041033964 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918574194 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041390628 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891821756 [INFO] [stdout] [Epoch 327] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041048005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891856015 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041377142 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918231047 [INFO] [stdout] [Epoch 328] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904106097 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891854718 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041364688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989182435 [INFO] [stdout] [Epoch 329] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041072927 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891853522 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904135321 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891825497 [INFO] [stdout] [Epoch 330] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904108395 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989185242 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041342622 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918265564 [INFO] [stdout] [Epoch 331] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904109412 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891851402 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041332855 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891827532 [INFO] [stdout] [Epoch 332] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990411035 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891850464 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904132384 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918284326 [INFO] [stdout] [Epoch 333] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041112148 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918495985 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041315539 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891829263 [INFO] [stdout] [Epoch 334] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041120128 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918488 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041307878 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918300286 [INFO] [stdout] [Epoch 335] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041127483 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891848064 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904130082 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918307347 [INFO] [stdout] [Epoch 336] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041134264 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891847387 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041294303 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891831386 [INFO] [stdout] [Epoch 337] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904114052 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184676 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041288288 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891831987 [INFO] [stdout] [Epoch 338] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041146302 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891846182 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041282737 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891832542 [INFO] [stdout] [Epoch 339] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904115163 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918456494 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041277622 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891833053 [INFO] [stdout] [Epoch 340] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041156552 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918451565 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041272903 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891833524 [INFO] [stdout] [Epoch 341] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041161082 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918447024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904126854 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918339593 [INFO] [stdout] [Epoch 342] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041165262 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918442844 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041264535 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183436 [INFO] [stdout] [Epoch 343] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041169114 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891843898 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041260838 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891834729 [INFO] [stdout] [Epoch 344] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041172664 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918435433 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041257418 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183507 [INFO] [stdout] [Epoch 345] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904117594 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918432164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041254276 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835385 [INFO] [stdout] [Epoch 346] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904117897 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918429127 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041251368 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891835675 [INFO] [stdout] [Epoch 347] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041181757 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041248695 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918359433 [INFO] [stdout] [Epoch 348] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041184335 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842376 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041246208 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918361903 [INFO] [stdout] [Epoch 349] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041186705 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891842138 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041243932 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836418 [INFO] [stdout] [Epoch 350] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041188898 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841918 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041241834 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836628 [INFO] [stdout] [Epoch 351] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119092 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918417164 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041239902 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918368215 [INFO] [stdout] [Epoch 352] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041192778 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184153 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041238103 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891836999 [INFO] [stdout] [Epoch 353] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041194494 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841359 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041236463 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918371634 [INFO] [stdout] [Epoch 354] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904119607 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918412 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041234942 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837316 [INFO] [stdout] [Epoch 355] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041197544 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891841053 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904123352 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918374565 [INFO] [stdout] [Epoch 356] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041198893 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041232233 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837586 [INFO] [stdout] [Epoch 357] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041200136 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840792 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041231034 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837706 [INFO] [stdout] [Epoch 358] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041201297 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918406756 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041229935 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918378157 [INFO] [stdout] [Epoch 359] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120235 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989184057 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041228902 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891837918 [INFO] [stdout] [Epoch 360] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041203334 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840472 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904122797 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380105 [INFO] [stdout] [Epoch 361] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041204233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918403825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041227115 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918380966 [INFO] [stdout] [Epoch 362] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120506 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041226304 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838176 [INFO] [stdout] [Epoch 363] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041205826 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918402215 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041225583 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918382487 [INFO] [stdout] [Epoch 364] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041206526 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891840151 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224905 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383164 [INFO] [stdout] [Epoch 365] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120718 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041224262 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918383797 [INFO] [stdout] [Epoch 366] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041207797 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918400245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223687 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918384363 [INFO] [stdout] [Epoch 367] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120834 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839968 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041223165 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918384896 [INFO] [stdout] [Epoch 368] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041208857 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918399157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041222654 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918385395 [INFO] [stdout] [Epoch 369] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120934 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839868 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412222 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838586 [INFO] [stdout] [Epoch 370] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904120978 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839824 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221789 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918386267 [INFO] [stdout] [Epoch 371] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041210173 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839784 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.249897990412214 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838664 [INFO] [stdout] [Epoch 372] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041210536 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839748 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041221056 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918386994 [INFO] [stdout] [Epoch 373] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041210875 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839713 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220734 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838731 [INFO] [stdout] [Epoch 374] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041211186 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918396825 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220423 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918387616 [INFO] [stdout] [Epoch 375] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041211486 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839651 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041220145 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838789 [INFO] [stdout] [Epoch 376] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041211752 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839625 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121989 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838815 [INFO] [stdout] [Epoch 377] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212002 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918395987 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219646 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918388376 [INFO] [stdout] [Epoch 378] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212224 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839576 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219435 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838859 [INFO] [stdout] [Epoch 379] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212435 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918395554 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219235 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838878 [INFO] [stdout] [Epoch 380] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212624 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839535 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041219046 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918388965 [INFO] [stdout] [Epoch 381] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412128 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839518 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121888 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838913 [INFO] [stdout] [Epoch 382] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041212968 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839501 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218724 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838929 [INFO] [stdout] [Epoch 383] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121313 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918394855 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121857 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389426 [INFO] [stdout] [Epoch 384] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918394716 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218436 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389564 [INFO] [stdout] [Epoch 385] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213395 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839457 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218302 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183897 [INFO] [stdout] [Epoch 386] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213517 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918394444 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041218191 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389814 [INFO] [stdout] [Epoch 387] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213634 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839433 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121808 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 388] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213734 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918394216 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121798 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390003 [INFO] [stdout] [Epoch 389] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213823 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839413 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217892 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183901 [INFO] [stdout] [Epoch 390] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041213917 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839404 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217814 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390175 [INFO] [stdout] [Epoch 391] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393944 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217725 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839025 [INFO] [stdout] [Epoch 392] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214078 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393866 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217658 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390325 [INFO] [stdout] [Epoch 393] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214145 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183938 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121758 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839038 [INFO] [stdout] [Epoch 394] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214206 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393733 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217536 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390425 [INFO] [stdout] [Epoch 395] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214256 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839368 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217492 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839048 [INFO] [stdout] [Epoch 396] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214306 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217436 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390525 [INFO] [stdout] [Epoch 397] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121435 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393583 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217392 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839057 [INFO] [stdout] [Epoch 398] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214394 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839353 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217337 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839062 [INFO] [stdout] [Epoch 399] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214444 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839347 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217303 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839065 [INFO] [stdout] [Epoch 400] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214483 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839344 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121727 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390686 [INFO] [stdout] [Epoch 401] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214522 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839339 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217226 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839072 [INFO] [stdout] [Epoch 402] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121456 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393356 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217192 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839075 [INFO] [stdout] [Epoch 403] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412146 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839331 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217148 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390797 [INFO] [stdout] [Epoch 404] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214633 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217126 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839082 [INFO] [stdout] [Epoch 405] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214655 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217092 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839084 [INFO] [stdout] [Epoch 406] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214683 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839321 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121707 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390863 [INFO] [stdout] [Epoch 407] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121471 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839319 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217048 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839089 [INFO] [stdout] [Epoch 408] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214739 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839089 [INFO] [stdout] [Epoch 409] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214744 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393156 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217026 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 410] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121475 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393145 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217015 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 411] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214755 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217015 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 412] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121476 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217003 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 413] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121476 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041217003 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 414] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214766 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216992 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 415] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214772 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393095 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216992 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 416] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214777 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393084 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216992 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 417] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214783 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393084 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121698 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 418] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214789 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839307 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121698 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 419] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214794 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839306 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121697 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 420] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412148 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839306 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121697 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 421] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214805 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839304 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121696 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390924 [INFO] [stdout] [Epoch 422] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121481 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839304 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121696 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390924 [INFO] [stdout] [Epoch 423] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214816 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839303 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216948 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390924 [INFO] [stdout] [Epoch 424] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214822 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216948 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390924 [INFO] [stdout] [Epoch 425] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214827 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393017 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216937 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390924 [INFO] [stdout] [Epoch 426] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214833 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918393006 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216937 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 427] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214839 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216926 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 428] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214844 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392995 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216926 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 429] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121485 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839297 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216915 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 430] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214855 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839297 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216915 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 431] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121486 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216904 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 432] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214866 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216904 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 433] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214872 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216892 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 434] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214877 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839293 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216892 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 435] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214883 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839293 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 436] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214888 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121688 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839096 [INFO] [stdout] [Epoch 437] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214894 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121687 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839096 [INFO] [stdout] [Epoch 438] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412149 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392906 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121687 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839096 [INFO] [stdout] [Epoch 439] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214905 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121686 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839096 [INFO] [stdout] [Epoch 440] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121491 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392884 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121686 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839097 [INFO] [stdout] [Epoch 441] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214916 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392873 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216848 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839097 [INFO] [stdout] [Epoch 442] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214922 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839286 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216848 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839097 [INFO] [stdout] [Epoch 443] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214927 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839286 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216837 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839097 [INFO] [stdout] [Epoch 444] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214933 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839284 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216837 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839098 [INFO] [stdout] [Epoch 445] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214938 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839284 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839098 [INFO] [stdout] [Epoch 446] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214944 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392823 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839098 [INFO] [stdout] [Epoch 447] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839281 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839098 [INFO] [stdout] [Epoch 448] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839281 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839099 [INFO] [stdout] [Epoch 449] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183928 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839098 [INFO] [stdout] [Epoch 450] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839279 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839098 [INFO] [stdout] [Epoch 451] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839279 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839098 [INFO] [stdout] [Epoch 452] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839279 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839098 [INFO] [stdout] [Epoch 453] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839279 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839097 [INFO] [stdout] [Epoch 454] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839279 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839097 [INFO] [stdout] [Epoch 455] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839278 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839097 [INFO] [stdout] [Epoch 456] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839097 [INFO] [stdout] [Epoch 457] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839096 [INFO] [stdout] [Epoch 458] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 459] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839096 [INFO] [stdout] [Epoch 460] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 461] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839277 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 462] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392756 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 463] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390947 [INFO] [stdout] [Epoch 464] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 465] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 466] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 467] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390924 [INFO] [stdout] [Epoch 468] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392745 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390935 [INFO] [stdout] [Epoch 469] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392734 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390924 [INFO] [stdout] [Epoch 470] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392734 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 471] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392734 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 472] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 473] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390913 [INFO] [stdout] [Epoch 474] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 475] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 476] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392723 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 477] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839271 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183909 [INFO] [stdout] [Epoch 478] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839271 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839089 [INFO] [stdout] [Epoch 479] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839089 [INFO] [stdout] [Epoch 480] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839089 [INFO] [stdout] [Epoch 481] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839089 [INFO] [stdout] [Epoch 482] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839088 [INFO] [stdout] [Epoch 483] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183927 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839088 [INFO] [stdout] [Epoch 484] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839269 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839088 [INFO] [stdout] [Epoch 485] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839268 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390863 [INFO] [stdout] [Epoch 486] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839269 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390863 [INFO] [stdout] [Epoch 487] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839268 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390863 [INFO] [stdout] [Epoch 488] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839268 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839085 [INFO] [stdout] [Epoch 489] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839268 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839085 [INFO] [stdout] [Epoch 490] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839268 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839085 [INFO] [stdout] [Epoch 491] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839085 [INFO] [stdout] [Epoch 492] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839084 [INFO] [stdout] [Epoch 493] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839267 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839084 [INFO] [stdout] [Epoch 494] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839084 [INFO] [stdout] [Epoch 495] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839083 [INFO] [stdout] [Epoch 496] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839084 [INFO] [stdout] [Epoch 497] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839083 [INFO] [stdout] [Epoch 498] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392656 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839082 [INFO] [stdout] [Epoch 499] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392645 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839083 [INFO] [stdout] [Epoch 500] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839082 [INFO] [stdout] [Epoch 501] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839082 [INFO] [stdout] [Epoch 502] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839082 [INFO] [stdout] [Epoch 503] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839081 [INFO] [stdout] [Epoch 504] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839081 [INFO] [stdout] [Epoch 505] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392634 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839081 [INFO] [stdout] [Epoch 506] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392623 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839081 [INFO] [stdout] [Epoch 507] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392623 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390797 [INFO] [stdout] [Epoch 508] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839261 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390786 [INFO] [stdout] [Epoch 509] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839261 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390786 [INFO] [stdout] [Epoch 510] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839261 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390774 [INFO] [stdout] [Epoch 511] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839261 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390774 [INFO] [stdout] [Epoch 512] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839261 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216837 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390763 [INFO] [stdout] [Epoch 513] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121495 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839261 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390774 [INFO] [stdout] [Epoch 514] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214955 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839261 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390774 [INFO] [stdout] [Epoch 515] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839259 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390774 [INFO] [stdout] [Epoch 516] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839259 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390763 [INFO] [stdout] [Epoch 517] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121496 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839259 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390763 [INFO] [stdout] [Epoch 518] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839259 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390763 [INFO] [stdout] [Epoch 519] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839258 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390763 [INFO] [stdout] [Epoch 520] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390763 [INFO] [stdout] [Epoch 521] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839075 [INFO] [stdout] [Epoch 522] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839075 [INFO] [stdout] [Epoch 523] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839075 [INFO] [stdout] [Epoch 524] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839075 [INFO] [stdout] [Epoch 525] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839074 [INFO] [stdout] [Epoch 526] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839074 [INFO] [stdout] [Epoch 527] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392556 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839074 [INFO] [stdout] [Epoch 528] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839074 [INFO] [stdout] [Epoch 529] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839073 [INFO] [stdout] [Epoch 530] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839072 [INFO] [stdout] [Epoch 531] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839073 [INFO] [stdout] [Epoch 532] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839072 [INFO] [stdout] [Epoch 533] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839072 [INFO] [stdout] [Epoch 534] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839254 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839071 [INFO] [stdout] [Epoch 535] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839253 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839072 [INFO] [stdout] [Epoch 536] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839252 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839071 [INFO] [stdout] [Epoch 537] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839252 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839071 [INFO] [stdout] [Epoch 538] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839252 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390697 [INFO] [stdout] [Epoch 539] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839252 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839071 [INFO] [stdout] [Epoch 540] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390697 [INFO] [stdout] [Epoch 541] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390697 [INFO] [stdout] [Epoch 542] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390697 [INFO] [stdout] [Epoch 543] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392506 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390686 [INFO] [stdout] [Epoch 544] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390697 [INFO] [stdout] [Epoch 545] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390686 [INFO] [stdout] [Epoch 546] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390686 [INFO] [stdout] [Epoch 547] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390675 [INFO] [stdout] [Epoch 548] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392495 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390675 [INFO] [stdout] [Epoch 549] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392484 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390675 [INFO] [stdout] [Epoch 550] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390675 [INFO] [stdout] [Epoch 551] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390663 [INFO] [stdout] [Epoch 552] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390663 [INFO] [stdout] [Epoch 553] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839065 [INFO] [stdout] [Epoch 554] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392473 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390663 [INFO] [stdout] [Epoch 555] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839065 [INFO] [stdout] [Epoch 556] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839065 [INFO] [stdout] [Epoch 557] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839065 [INFO] [stdout] [Epoch 558] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839064 [INFO] [stdout] [Epoch 559] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839064 [INFO] [stdout] [Epoch 560] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839064 [INFO] [stdout] [Epoch 561] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839064 [INFO] [stdout] [Epoch 562] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839063 [INFO] [stdout] [Epoch 563] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839245 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839063 [INFO] [stdout] [Epoch 564] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839244 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839063 [INFO] [stdout] [Epoch 565] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839244 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839062 [INFO] [stdout] [Epoch 566] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839063 [INFO] [stdout] [Epoch 567] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839062 [INFO] [stdout] [Epoch 568] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839062 [INFO] [stdout] [Epoch 569] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839061 [INFO] [stdout] [Epoch 570] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839061 [INFO] [stdout] [Epoch 571] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839243 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839061 [INFO] [stdout] [Epoch 572] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839242 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390597 [INFO] [stdout] [Epoch 573] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839061 [INFO] [stdout] [Epoch 574] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390597 [INFO] [stdout] [Epoch 575] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390597 [INFO] [stdout] [Epoch 576] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390597 [INFO] [stdout] [Epoch 577] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839058 [INFO] [stdout] [Epoch 578] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839058 [INFO] [stdout] [Epoch 579] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392407 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839057 [INFO] [stdout] [Epoch 580] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392395 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839057 [INFO] [stdout] [Epoch 581] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839058 [INFO] [stdout] [Epoch 582] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839057 [INFO] [stdout] [Epoch 583] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839057 [INFO] [stdout] [Epoch 584] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839057 [INFO] [stdout] [Epoch 585] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392384 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839056 [INFO] [stdout] [Epoch 586] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392373 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839056 [INFO] [stdout] [Epoch 587] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392373 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390547 [INFO] [stdout] [Epoch 588] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392373 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390547 [INFO] [stdout] [Epoch 589] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390547 [INFO] [stdout] [Epoch 590] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390536 [INFO] [stdout] [Epoch 591] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839236 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390547 [INFO] [stdout] [Epoch 592] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839235 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390547 [INFO] [stdout] [Epoch 593] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839235 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390536 [INFO] [stdout] [Epoch 594] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839235 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390536 [INFO] [stdout] [Epoch 595] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390536 [INFO] [stdout] [Epoch 596] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390525 [INFO] [stdout] [Epoch 597] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390525 [INFO] [stdout] [Epoch 598] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390525 [INFO] [stdout] [Epoch 599] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390514 [INFO] [stdout] [Epoch 600] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390514 [INFO] [stdout] [Epoch 601] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390514 [INFO] [stdout] [Epoch 602] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183905 [INFO] [stdout] [Epoch 603] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839233 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183905 [INFO] [stdout] [Epoch 604] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839233 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183905 [INFO] [stdout] [Epoch 605] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839232 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839049 [INFO] [stdout] [Epoch 606] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839232 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839049 [INFO] [stdout] [Epoch 607] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839232 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839049 [INFO] [stdout] [Epoch 608] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839232 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839048 [INFO] [stdout] [Epoch 609] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839232 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839048 [INFO] [stdout] [Epoch 610] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392307 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839048 [INFO] [stdout] [Epoch 611] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392307 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839047 [INFO] [stdout] [Epoch 612] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839047 [INFO] [stdout] [Epoch 613] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839047 [INFO] [stdout] [Epoch 614] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839047 [INFO] [stdout] [Epoch 615] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839046 [INFO] [stdout] [Epoch 616] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839046 [INFO] [stdout] [Epoch 617] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839046 [INFO] [stdout] [Epoch 618] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392295 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390447 [INFO] [stdout] [Epoch 619] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392284 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390447 [INFO] [stdout] [Epoch 620] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392284 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390447 [INFO] [stdout] [Epoch 621] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839227 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390447 [INFO] [stdout] [Epoch 622] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839227 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390436 [INFO] [stdout] [Epoch 623] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839227 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390436 [INFO] [stdout] [Epoch 624] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839227 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390436 [INFO] [stdout] [Epoch 625] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839227 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390425 [INFO] [stdout] [Epoch 626] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839227 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390425 [INFO] [stdout] [Epoch 627] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390425 [INFO] [stdout] [Epoch 628] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392257 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390425 [INFO] [stdout] [Epoch 629] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390414 [INFO] [stdout] [Epoch 630] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390414 [INFO] [stdout] [Epoch 631] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390414 [INFO] [stdout] [Epoch 632] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390414 [INFO] [stdout] [Epoch 633] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392246 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183904 [INFO] [stdout] [Epoch 634] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214966 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183904 [INFO] [stdout] [Epoch 635] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392234 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183904 [INFO] [stdout] [Epoch 636] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183904 [INFO] [stdout] [Epoch 637] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839039 [INFO] [stdout] [Epoch 638] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839039 [INFO] [stdout] [Epoch 639] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839039 [INFO] [stdout] [Epoch 640] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839039 [INFO] [stdout] [Epoch 641] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392223 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839039 [INFO] [stdout] [Epoch 642] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839221 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839038 [INFO] [stdout] [Epoch 643] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839038 [INFO] [stdout] [Epoch 644] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839038 [INFO] [stdout] [Epoch 645] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839038 [INFO] [stdout] [Epoch 646] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839037 [INFO] [stdout] [Epoch 647] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183922 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839037 [INFO] [stdout] [Epoch 648] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214972 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839219 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839037 [INFO] [stdout] [Epoch 649] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839219 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839037 [INFO] [stdout] [Epoch 650] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839218 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839037 [INFO] [stdout] [Epoch 651] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839218 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839036 [INFO] [stdout] [Epoch 652] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839218 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839036 [INFO] [stdout] [Epoch 653] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839218 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839036 [INFO] [stdout] [Epoch 654] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839218 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216826 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839036 [INFO] [stdout] [Epoch 655] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839217 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839036 [INFO] [stdout] [Epoch 656] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214977 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390347 [INFO] [stdout] [Epoch 657] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390347 [INFO] [stdout] [Epoch 658] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390347 [INFO] [stdout] [Epoch 659] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390347 [INFO] [stdout] [Epoch 660] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390347 [INFO] [stdout] [Epoch 661] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390347 [INFO] [stdout] [Epoch 662] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214983 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390336 [INFO] [stdout] [Epoch 663] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390336 [INFO] [stdout] [Epoch 664] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390336 [INFO] [stdout] [Epoch 665] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390336 [INFO] [stdout] [Epoch 666] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216815 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390336 [INFO] [stdout] [Epoch 667] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390325 [INFO] [stdout] [Epoch 668] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214988 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839211 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390325 [INFO] [stdout] [Epoch 669] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839211 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390325 [INFO] [stdout] [Epoch 670] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839211 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390325 [INFO] [stdout] [Epoch 671] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839211 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390325 [INFO] [stdout] [Epoch 672] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041214994 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183921 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390325 [INFO] [stdout] [Epoch 673] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183921 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390325 [INFO] [stdout] [Epoch 674] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839209 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390314 [INFO] [stdout] [Epoch 675] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839209 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390314 [INFO] [stdout] [Epoch 676] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839209 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216804 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390314 [INFO] [stdout] [Epoch 677] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839209 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216793 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390314 [INFO] [stdout] [Epoch 678] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839208 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216793 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390314 [INFO] [stdout] [Epoch 679] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839207 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216793 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390314 [INFO] [stdout] [Epoch 680] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215005 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839207 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216793 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390314 [INFO] [stdout] [Epoch 681] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121501 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839207 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216793 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390314 [INFO] [stdout] [Epoch 682] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121501 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839207 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216793 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390297 [INFO] [stdout] [Epoch 683] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121501 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392057 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216793 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390297 [INFO] [stdout] [Epoch 684] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121501 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216793 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390297 [INFO] [stdout] [Epoch 685] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215016 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216781 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390297 [INFO] [stdout] [Epoch 686] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215016 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216781 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390297 [INFO] [stdout] [Epoch 687] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215016 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216781 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390297 [INFO] [stdout] [Epoch 688] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215016 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392035 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216781 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390297 [INFO] [stdout] [Epoch 689] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215022 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392023 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216781 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390297 [INFO] [stdout] [Epoch 690] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215022 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392023 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216781 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 691] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215022 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392023 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216781 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 692] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215027 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392023 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 693] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215027 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839201 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 694] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215027 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 695] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215033 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 696] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215033 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 697] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215033 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918392 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121677 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 698] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215038 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391985 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121676 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 699] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215038 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391974 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121676 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 700] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215038 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391974 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121676 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390286 [INFO] [stdout] [Epoch 701] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215044 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391974 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121676 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 702] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215044 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121676 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 703] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215044 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121676 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 704] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121505 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839195 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216748 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 705] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121505 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839195 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216748 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 706] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215055 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839195 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216748 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 707] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215055 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839194 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216748 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 708] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215055 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216748 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 709] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121506 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216737 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 710] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121506 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216737 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 711] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215066 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839193 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216737 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 712] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215066 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839192 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216737 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 713] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215066 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216737 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 714] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215072 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216726 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 715] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215072 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391907 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216726 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 716] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215077 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391896 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216726 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 717] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215077 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216726 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 718] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215077 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216726 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 719] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391885 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216715 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 720] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215083 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391874 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216715 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390275 [INFO] [stdout] [Epoch 721] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215088 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839186 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216715 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 722] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215088 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839186 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216715 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 723] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215094 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839186 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 724] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215094 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 725] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412151 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839184 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 726] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412151 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839184 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 727] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215105 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839184 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 728] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215105 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839184 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 729] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121511 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839183 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 730] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121511 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839182 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 731] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215116 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839182 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 732] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215116 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839182 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 733] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391807 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 734] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 735] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 736] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391796 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 737] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391785 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 738] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 739] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390264 [INFO] [stdout] [Epoch 740] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839025 [INFO] [stdout] [Epoch 741] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839025 [INFO] [stdout] [Epoch 742] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839025 [INFO] [stdout] [Epoch 743] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839025 [INFO] [stdout] [Epoch 744] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839024 [INFO] [stdout] [Epoch 745] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839024 [INFO] [stdout] [Epoch 746] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839024 [INFO] [stdout] [Epoch 747] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839023 [INFO] [stdout] [Epoch 748] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839022 [INFO] [stdout] [Epoch 749] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121511 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391774 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839022 [INFO] [stdout] [Epoch 750] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215116 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839022 [INFO] [stdout] [Epoch 751] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839021 [INFO] [stdout] [Epoch 752] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121511 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 753] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121511 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839176 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 754] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121511 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 755] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215116 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839175 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 756] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 757] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839173 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 758] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839173 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 759] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839173 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 760] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839172 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 761] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 762] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183917 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 763] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839169 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839021 [INFO] [stdout] [Epoch 764] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839169 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 765] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839169 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 766] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839168 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 767] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839168 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 768] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839168 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 769] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839167 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 770] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391657 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 771] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391657 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 772] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391646 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 773] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 774] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839021 [INFO] [stdout] [Epoch 775] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 776] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391635 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 777] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391624 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 778] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839161 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 779] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839161 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 780] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839161 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 781] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839159 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 782] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839159 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 783] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839159 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839021 [INFO] [stdout] [Epoch 784] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839159 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 785] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839158 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 786] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 787] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 788] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839157 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 789] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 790] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215216 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 791] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stderr] error: test failed, to rerun pass '--lib' [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839021 [INFO] [stdout] [Epoch 792] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391546 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 793] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391535 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 794] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391524 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 795] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391524 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 796] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391524 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 797] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839021 [INFO] [stdout] [Epoch 798] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 799] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 800] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390197 [INFO] [stdout] [Epoch 801] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390186 [INFO] [stdout] [Epoch 802] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390186 [INFO] [stdout] [Epoch 803] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183915 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390186 [INFO] [stdout] [Epoch 804] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839149 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390186 [INFO] [stdout] [Epoch 805] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390175 [INFO] [stdout] [Epoch 806] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839149 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390175 [INFO] [stdout] [Epoch 807] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390175 [INFO] [stdout] [Epoch 808] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390164 [INFO] [stdout] [Epoch 809] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390164 [INFO] [stdout] [Epoch 810] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390164 [INFO] [stdout] [Epoch 811] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390164 [INFO] [stdout] [Epoch 812] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839015 [INFO] [stdout] [Epoch 813] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839014 [INFO] [stdout] [Epoch 814] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839015 [INFO] [stdout] [Epoch 815] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839014 [INFO] [stdout] [Epoch 816] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839013 [INFO] [stdout] [Epoch 817] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839013 [INFO] [stdout] [Epoch 818] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839012 [INFO] [stdout] [Epoch 819] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839012 [INFO] [stdout] [Epoch 820] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839012 [INFO] [stdout] [Epoch 821] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215216 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839011 [INFO] [stdout] [Epoch 822] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183901 [INFO] [stdout] [Epoch 823] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390086 [INFO] [stdout] [Epoch 824] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390086 [INFO] [stdout] [Epoch 825] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390086 [INFO] [stdout] [Epoch 826] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390075 [INFO] [stdout] [Epoch 827] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390064 [INFO] [stdout] [Epoch 828] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390075 [INFO] [stdout] [Epoch 829] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390064 [INFO] [stdout] [Epoch 830] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390053 [INFO] [stdout] [Epoch 831] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390053 [INFO] [stdout] [Epoch 832] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390053 [INFO] [stdout] [Epoch 833] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839004 [INFO] [stdout] [Epoch 834] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891839004 [INFO] [stdout] [Epoch 835] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390025 [INFO] [stdout] [Epoch 836] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390014 [INFO] [stdout] [Epoch 837] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390014 [INFO] [stdout] [Epoch 838] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390003 [INFO] [stdout] [Epoch 839] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390003 [INFO] [stdout] [Epoch 840] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918390003 [INFO] [stdout] [Epoch 841] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838999 [INFO] [stdout] [Epoch 842] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838999 [INFO] [stdout] [Epoch 843] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838998 [INFO] [stdout] [Epoch 844] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838998 [INFO] [stdout] [Epoch 845] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838998 [INFO] [stdout] [Epoch 846] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838997 [INFO] [stdout] [Epoch 847] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838996 [INFO] [stdout] [Epoch 848] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838996 [INFO] [stdout] [Epoch 849] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838995 [INFO] [stdout] [Epoch 850] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838995 [INFO] [stdout] [Epoch 851] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838995 [INFO] [stdout] [Epoch 852] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389936 [INFO] [stdout] [Epoch 853] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839148 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389936 [INFO] [stdout] [Epoch 854] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 855] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 856] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839147 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 857] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215122 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 858] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 859] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 860] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 861] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391435 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 862] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391435 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 863] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391435 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 864] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839142 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 865] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839141 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 866] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839141 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 867] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839141 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 868] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391396 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 869] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391396 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 870] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 871] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 872] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391385 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 873] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391374 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 874] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 875] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 876] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391363 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 877] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 878] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 879] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 880] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839134 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 881] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839133 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 882] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839132 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 883] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839132 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 884] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839132 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 885] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839131 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 886] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839131 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 887] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 888] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 889] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391296 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 890] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391285 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 891] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215216 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 892] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 893] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391274 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 894] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391263 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 895] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391263 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 896] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839125 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 897] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839125 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 898] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839124 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 899] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 900] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 901] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389925 [INFO] [stdout] [Epoch 902] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839123 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 903] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839122 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 904] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215255 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 905] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121525 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389903 [INFO] [stdout] [Epoch 906] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389914 [INFO] [stdout] [Epoch 907] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215255 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389903 [INFO] [stdout] [Epoch 908] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121525 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389903 [INFO] [stdout] [Epoch 909] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121657 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389903 [INFO] [stdout] [Epoch 910] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121525 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838989 [INFO] [stdout] [Epoch 911] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121525 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839121 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838989 [INFO] [stdout] [Epoch 912] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838988 [INFO] [stdout] [Epoch 913] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838989 [INFO] [stdout] [Epoch 914] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121525 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216582 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838988 [INFO] [stdout] [Epoch 915] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215244 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838987 [INFO] [stdout] [Epoch 916] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838987 [INFO] [stdout] [Epoch 917] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215238 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838986 [INFO] [stdout] [Epoch 918] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838986 [INFO] [stdout] [Epoch 919] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838985 [INFO] [stdout] [Epoch 920] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216593 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838986 [INFO] [stdout] [Epoch 921] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215233 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838985 [INFO] [stdout] [Epoch 922] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838985 [INFO] [stdout] [Epoch 923] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215227 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389836 [INFO] [stdout] [Epoch 924] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389825 [INFO] [stdout] [Epoch 925] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389825 [INFO] [stdout] [Epoch 926] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215216 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389814 [INFO] [stdout] [Epoch 927] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389814 [INFO] [stdout] [Epoch 928] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389803 [INFO] [stdout] [Epoch 929] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389803 [INFO] [stdout] [Epoch 930] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838979 [INFO] [stdout] [Epoch 931] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389803 [INFO] [stdout] [Epoch 932] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838979 [INFO] [stdout] [Epoch 933] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838979 [INFO] [stdout] [Epoch 934] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838978 [INFO] [stdout] [Epoch 935] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838978 [INFO] [stdout] [Epoch 936] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838977 [INFO] [stdout] [Epoch 937] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838977 [INFO] [stdout] [Epoch 938] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838976 [INFO] [stdout] [Epoch 939] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838976 [INFO] [stdout] [Epoch 940] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838974 [INFO] [stdout] [Epoch 941] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838974 [INFO] [stdout] [Epoch 942] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838973 [INFO] [stdout] [Epoch 943] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838972 [INFO] [stdout] [Epoch 944] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838972 [INFO] [stdout] [Epoch 945] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838971 [INFO] [stdout] [Epoch 946] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838971 [INFO] [stdout] [Epoch 947] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183897 [INFO] [stdout] [Epoch 948] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183897 [INFO] [stdout] [Epoch 949] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183897 [INFO] [stdout] [Epoch 950] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391196 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183897 [INFO] [stdout] [Epoch 951] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.260201989183897 [INFO] [stdout] [Epoch 952] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389686 [INFO] [stdout] [Epoch 953] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389686 [INFO] [stdout] [Epoch 954] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389675 [INFO] [stdout] [Epoch 955] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389675 [INFO] [stdout] [Epoch 956] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389664 [INFO] [stdout] [Epoch 957] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389664 [INFO] [stdout] [Epoch 958] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389653 [INFO] [stdout] [Epoch 959] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.26020198918389653 [INFO] [stdout] [Epoch 960] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 961] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 962] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215127 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216704 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 963] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391185 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 964] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215133 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391174 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 965] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215138 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391163 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 966] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391163 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 967] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391163 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 968] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 969] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215144 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391146 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216693 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 970] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 971] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121515 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216681 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 972] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391135 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 973] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215155 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391124 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 974] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121516 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 975] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 976] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391113 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 977] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 978] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215166 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.260201989183911 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121667 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 979] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215172 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839109 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 980] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839109 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 981] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215177 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839109 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 982] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839108 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 983] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839107 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.2498979904121666 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 984] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215183 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839107 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 985] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839107 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216648 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 986] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215188 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.2602019891839106 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 987] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215194 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 988] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 989] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 990] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.249897990412152 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391046 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216637 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 991] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391035 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 992] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215205 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 993] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391024 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 994] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215216 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391013 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 995] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.2498979904121521 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391013 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216626 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 996] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215216 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 997] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] [Epoch 998] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215216 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216615 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838963 [INFO] [stdout] [Epoch 999] [INFO] [stdout] Trainning batch 0 ... Ok, Mean loss (MeanSquare): 0.24989799041215222 [INFO] [stdout] Trainning batch 1 ... Ok, Mean loss (MeanSquare): 0.26020198918391 [INFO] [stdout] Trainning batch 2 ... Ok, Mean loss (MeanSquare): 0.24989799041216604 [INFO] [stdout] Trainning batch 3 ... Ok, Mean loss (MeanSquare): 0.2602019891838964 [INFO] [stdout] thread 'models::sequential::test_sequential_xor1' panicked at 'assertion failed: `(left == right)` [INFO] [stdout] left: `[0.0, 0.0, 0.0, 0.0]`, [INFO] [stdout] right: `[0.0, 1.0, 1.0, 0.0]`', src/models/sequential.rs:242:5 [INFO] [stdout] stack backtrace: [INFO] [stdout] 0: 0x556ae84a5edd - std::backtrace_rs::backtrace::libunwind::trace::hee598835bc88d35b [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/../../backtrace/src/backtrace/libunwind.rs:93:5 [INFO] [stdout] 1: 0x556ae84a5edd - std::backtrace_rs::backtrace::trace_unsynchronized::h9cdc730ba5cf5d72 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/../../backtrace/src/backtrace/mod.rs:66:5 [INFO] [stdout] 2: 0x556ae84a5edd - std::sys_common::backtrace::_print_fmt::h75aeaf7ed30e43fa [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/sys_common/backtrace.rs:66:5 [INFO] [stdout] 3: 0x556ae84a5edd - ::fmt::h606862f787600875 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/sys_common/backtrace.rs:45:22 [INFO] [stdout] 4: 0x556ae84cb99c - core::fmt::write::he803f0f418caf762 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/core/src/fmt/mod.rs:1190:17 [INFO] [stdout] 5: 0x556ae84a14d8 - std::io::Write::write_fmt::hbe7c1a63616291e2 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/io/mod.rs:1657:15 [INFO] [stdout] 6: 0x556ae84a8247 - std::sys_common::backtrace::_print::h64d038cf8ac3e13e [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/sys_common/backtrace.rs:48:5 [INFO] [stdout] 7: 0x556ae84a8247 - std::sys_common::backtrace::print::h359300b4a7fccf65 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/sys_common/backtrace.rs:35:9 [INFO] [stdout] 8: 0x556ae84a8247 - std::panicking::default_hook::{{closure}}::hf51be35e2f510149 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:295:22 [INFO] [stdout] 9: 0x556ae84a7f7c - std::panicking::default_hook::h03ca0f22e1d2d25e [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:311:9 [INFO] [stdout] 10: 0x556ae84a8999 - std::panicking::rust_panic_with_hook::h3b7380e99b825b63 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:698:17 [INFO] [stdout] 11: 0x556ae84a8687 - std::panicking::begin_panic_handler::{{closure}}::h8e849d0710154ce0 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:588:13 [INFO] [stdout] 12: 0x556ae84a63a4 - std::sys_common::backtrace::__rust_end_short_backtrace::hedcdaddbd4c46cc5 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/sys_common/backtrace.rs:138:18 [INFO] [stdout] 13: 0x556ae84a8399 - rust_begin_unwind [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:584:5 [INFO] [stdout] 14: 0x556ae8356603 - core::panicking::panic_fmt::he1bbc7336d49a357 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/core/src/panicking.rs:143:14 [INFO] [stdout] 15: 0x556ae84ca2b8 - core::panicking::assert_failed_inner::hbaac70a629215a04 [INFO] [stdout] 16: 0x556ae836c59a - core::panicking::assert_failed::h9b3e593687115d34 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/core/src/panicking.rs:182:5 [INFO] [stdout] 17: 0x556ae837e38d - easynn::models::sequential::test_sequential_xor1::h2b55b971e53e1758 [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:242:5 [INFO] [stdout] 18: 0x556ae837cf7a - easynn::models::sequential::test_sequential_xor1::{{closure}}::he46f11ac626e3867 [INFO] [stdout] at /opt/rustwide/workdir/src/models/sequential.rs:205:1 [INFO] [stdout] 19: 0x556ae83925ce - core::ops::function::FnOnce::call_once::heaa5ed788e59bc61 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/core/src/ops/function.rs:227:5 [INFO] [stdout] 20: 0x556ae83c44c3 - core::ops::function::FnOnce::call_once::h2a47b4b927cb6ca5 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/core/src/ops/function.rs:227:5 [INFO] [stdout] 21: 0x556ae83c44c3 - test::__rust_begin_short_backtrace::h594ef8055a183b9b [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/test/src/lib.rs:575:5 [INFO] [stdout] 22: 0x556ae83c31a4 - as core::ops::function::FnOnce>::call_once::hb40cbb8bc3e1be15 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/alloc/src/boxed.rs:1853:9 [INFO] [stdout] 23: 0x556ae83c31a4 - as core::ops::function::FnOnce<()>>::call_once::ha4f2bd3b806745a0 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/core/src/panic/unwind_safe.rs:271:9 [INFO] [stdout] 24: 0x556ae83c31a4 - std::panicking::try::do_call::h92af9f8bc77a5987 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:492:40 [INFO] [stdout] 25: 0x556ae83c31a4 - std::panicking::try::h9df49eeae42572b7 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:456:19 [INFO] [stdout] 26: 0x556ae83c31a4 - std::panic::catch_unwind::h101dbadc82bbe0fd [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panic.rs:137:14 [INFO] [stdout] 27: 0x556ae83c31a4 - test::run_test_in_process::h2ad7bffb068e750a [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/test/src/lib.rs:598:18 [INFO] [stdout] 28: 0x556ae83c31a4 - test::run_test::run_test_inner::{{closure}}::h384faf46554c5acb [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/test/src/lib.rs:492:39 [INFO] [stdout] 29: 0x556ae83ccac1 - test::run_test::run_test_inner::{{closure}}::h17cfe94835a46685 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/test/src/lib.rs:519:37 [INFO] [stdout] 30: 0x556ae83ccac1 - std::sys_common::backtrace::__rust_begin_short_backtrace::h82709e5086312627 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/sys_common/backtrace.rs:122:18 [INFO] [stdout] 31: 0x556ae839913f - std::thread::Builder::spawn_unchecked_::{{closure}}::{{closure}}::hdfea66a201b39571 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/thread/mod.rs:498:17 [INFO] [stdout] 32: 0x556ae839913f - as core::ops::function::FnOnce<()>>::call_once::h4912df03598e67fa [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/core/src/panic/unwind_safe.rs:271:9 [INFO] [stdout] 33: 0x556ae839913f - std::panicking::try::do_call::h6d5dc1045d0eade8 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:492:40 [INFO] [stdout] 34: 0x556ae839913f - std::panicking::try::hbc897fc717ec6571 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panicking.rs:456:19 [INFO] [stdout] 35: 0x556ae839913f - std::panic::catch_unwind::h27f1e958c91391ad [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/panic.rs:137:14 [INFO] [stdout] 36: 0x556ae839913f - std::thread::Builder::spawn_unchecked_::{{closure}}::h1b42e48537edc3c0 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/thread/mod.rs:497:30 [INFO] [stdout] 37: 0x556ae839913f - core::ops::function::FnOnce::call_once{{vtable.shim}}::h9137b3d6d2a88354 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/core/src/ops/function.rs:227:5 [INFO] [stdout] 38: 0x556ae84ae813 - as core::ops::function::FnOnce>::call_once::hf70ac038171e3e1a [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/alloc/src/boxed.rs:1853:9 [INFO] [stdout] 39: 0x556ae84ae813 - as core::ops::function::FnOnce>::call_once::he6690128792365ad [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/alloc/src/boxed.rs:1853:9 [INFO] [stdout] 40: 0x556ae84ae813 - std::sys::unix::thread::Thread::new::thread_start::ha07928d93d5a5ec9 [INFO] [stdout] at /rustc/7737e0b5c4103216d6fd8cf941b7ab9bdbaace7c/library/std/src/sys/unix/thread.rs:108:17 [INFO] [stdout] 41: 0x7fdb92118609 - start_thread [INFO] [stdout] 42: 0x7fdb91ee8163 - clone [INFO] [stdout] 43: 0x0 - [INFO] [stdout] [INFO] [stdout] [INFO] [stdout] failures: [INFO] [stdout] models::sequential::test_sequential_xor1 [INFO] [stdout] [INFO] [stdout] test result: FAILED. 6 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 1.55s [INFO] [stdout] [INFO] running `Command { std: "docker" "inspect" "dea33f4a94644066f29a72888eee19b8f75f1a7307b05ea493827cbbb37e1138", kill_on_drop: false }` [INFO] running `Command { std: "docker" "rm" "-f" "dea33f4a94644066f29a72888eee19b8f75f1a7307b05ea493827cbbb37e1138", kill_on_drop: false }` [INFO] [stdout] dea33f4a94644066f29a72888eee19b8f75f1a7307b05ea493827cbbb37e1138